
Fast and Space-Efficient Secure Frequent Pattern Mining by FHE

Hiroki Imabayashi, Yu Ishimaki, Akira Umayabara, Hayato Yamana
Waseda University

Tokyo, Japan
{imabayashi, yuishi, uma, yamana}@yama.info.waseda.ac.jp

Abstract— In the big data era, security and privacy concerns
are growing. One of the big challenges is secure Frequent Pattern
Mining (FPM) over Fully Homomorphic Encryption (FHE). There
exist some research efforts aimed at speeding-up, however, we
have a big room so as to decrease time and space complexity.
Apriori over FHE, in particular, generates a large number of
ciphertexts during the support calculation, which results in both
large time and space complexity. To solve it, we proposed a speed-
up technique, around 430 times faster and 18.9 times smaller
memory usage than the state-of-the-art method, by adopting both
packing and caching mechanism. In this paper, we further propose
to decrease the memory space used for caching. Our goal is to
discard redundant cached ciphertexts without increasing the
execution time. Our experimental results show that our method
decreases the memory usage by 6.09% at most in comparison with
our previous method without increasing the execution time.

Keywords—Fully Homomorphic Encryption; Frequent Pattern
Mining; Cache Pruning; Ciphertext Caching;

I. INTRODUCTION

To execute mining tasks securely on a cloud server, several
studies on FHE exist. Liu et al. [1] proposed a state-of-the-art
Frequent Patten Mining (FPM) protocol over FHE called P3CC,
which however requires long execution time. To reduce it, we
adopted both ciphertext-packing and ciphertext-caching [2].
Although this technique accelerates the support calculations
with caches, it requires additional memory space in 𝒪 2# ,
where N is the number of different items, which leads to a
critical problem with large datasets.

In this paper, we propose a novel cache-pruning technique to
prevent the server from caching non-reused ciphertexts. Besides,
we propose a fast and space-efficient FPM protocol for Apriori
over FHE with the cache-pruning technique. The advantage of
our protocol is twofold: i) The larger the dataset size is, the more
our cache-pruning technique saves the memory space. ii) Our
protocol has little effect on the execution time by separating the
cache-pruning process on different threads.

II. RELATED WORK
There exist several works to execute mining tasks securely

on a cloud server. The works on data mining with cryptosystems
[3][4] is classified into two approaches: multi-party computation
(MPC) and homomorphic encryption (HE). In an approach by
MPC, Kantarcioglu et al. [3] proposed an algorithm for mining
frequent patterns from distributed databases while preserving
privacy among multi-parties. On the other hand, in an approach
by HE, Kaosar et al. [4] proposed a technique to compare
numbers to judge “larger than” over encrypted data with FHE in
a two-party association rule mining scenario, followed by
showing that the approach by MPC is not appropriate for the
association rule mining due to large costs on the storage,
communications and calculations.

In particular, as to the frequent pattern mining by FHE, Liu
et al. [1] proposed Privacy Preserving Protocol for Counting
Candidates (P3CC), which encrypts all individual binary-
represented components in the item-transaction matrix data, i.e.,

component-wise encryption, and then applies addition or
multiplication to each ciphertext individually. In P3CC,
therefore, the total number of ciphertexts increases linearly with
the matrix size, which results in the excessive memory usage,
communication costs, and the operational costs over encrypted
data. To address this issue, we proposed a speed-up technique
[2], which adopted ciphertext-packing by Smart and
Vercauteren [5][6] with our constructed ciphertext-caching
mechanism. With the packing mechanism, multiple components
are packed into a ciphertext, which reduces total number of
ciphertexts. The caching mechanism reduces the number of
redundant multiplications among ciphertexts by reusing
previously calculated ciphertexts during the support calculation.
Although this technique is able to speed-up around 430 times
while reducing memory space 18.9 times in comparison with
P3CC, this caching mechanism caches redundant ciphertexts,
which uses an additional memory space.

III. METHOD

 Apriori extracts frequent patterns whose frequency called
support is larger than a given threshold called minimum support.
However, with FHE, it is hard to judge “larger than” because a
comparison over ciphertexts is impossible or takes long time.
Thus, in previous implementations [1][2], a client takes over the
comparison on behalf of the sever by decrypting them, followed
by generating next-pattern-length (here, assumed as k) candidate
itemsets, and sending them back to the server. Then, the server
calculates supports of the length k candidate itemsets. In our
previous proposal [2], during the support calculation on the
server, we keep all the previously calculated supports in
ciphertext form, hereafter we call them as cached ciphertexts,
and reuse them to speed-up the later support calculation for
longer-length candidate itemsets.
 To prune wasteful cached ciphertexts, our cache-pruning
technique generates pseudo candidates of length k+1 from the
candidates of length k by using item-ids that are not encrypted
[1][2]. Here, item-ids are hashed not to be known by the server
[1]. Our idea behind is to generate pseudo candidates of length
k+1 to prune the cache on the server instead of waiting length
k+1 real candidates sent from the client. We prune the cached
ciphertexts if it is not any of the subsets of length k+1 pseudo
candidates. Fig. 1 shows our protocol overview, which executes
cache-pruning asynchronously to have little effect on the
execution time.

IV. EXPERIMENTAL RESULTS AND EVALUATION

 We evaluated the effectiveness of our proposed protocol
with cache-pruning technique in terms of the execution time,
memory usage and the number of caches.
 Our method is implemented with FHE library called HElib.
The platform consists of two machines: a client with an Intel
Xeon E5-2643 v3@3.4 GHz CPU with 512 GB RAM on 12
threads, and a server with an Intel Xeon E7-8880 v3@2.3 GHz
CPU with 1 TB RAM on 24 threads, both of which are

connected with 10Gbps Ethernet as shown in TABLE 1. We
experimented with various datasets where both the average
length of items per transaction, T, and the number of item-ids,
N, are varied. We set the number of transactions, D, to 10,000,
minimum support to 20% of D, i.e., 2,000.
 Our experimental results compared with P3CC [1] and our
previously proposed protocol [2] are shown in TABLE 2. We
also show them in figures: i) the execution time in Figure 2, ii)
the memory usage in Figure 3, and iii) the number of caches in

Figure 4, while varying the number of different items. As
shown in Figure 2, the execution time of our proposed protocol
[2] and that of our newly proposed protocol are almost same,
while P3CC [1] takes much longer time. Figure 3 shows that the
saved memory space becomes larger as N increases, while the
memory usage of every protocol increases linearly on N. Figure
4 shows that our proposed cache-pruning technique
successfully discarded larger number of cached ciphertexts as
N increases, while the number of caches increases linearly on

Figure 1. Overview of our protocol with cache-pruning

TABLE 2. Comparison of memory size and #cache

TABLE 1. Experimental environment

N.
 Our method successfully decreased both the number of
cached ciphertexts (#cache) and the size of memory without
changing the execution time much. At the maximum, we
decreased 6.09% of memory when N is 200.

V. CONCLUSION AND DISCUSSION
 In this paper, we proposed a fast and space-efficient FPM
protocol for Apriori over FHE, which decreases a memory
space by pruning wasteful cashed ciphertexts. With this cache-
pruning technique, the experimental results showed that our
proposed protocol decreased memory usage by 6.09% at most.
 As for the remaining problem, our protocol still has
limitations to the dataset size, since the memory space increases
linearly on the number of different items. In real world
applications, available computational resources and network
bandwidth are limited. We will, therefore, conduct a new
construction of FPM protocol where data is processed in stream
computation, to further make our FPM protocol fast and space-
efficient.

AKNOWLEDGMENT
This work was supported by CREST, JST.

REFERENCES
[1] J. Liu, J. Li, S. Xu, et al. “Secure outsourced frequent pattern mining by

fully homomorphic encryption.” Big Data Analytics and Knowledge
Discovery, LNCS, vol. 9264, pp. 70–81, 2015.

[2] H. Imabayashi, Y. Ishimaki, A. Umayabara, et al. “Secure frequent pattern
mining by fully homomorphic encryption with ciphertext packing.”
International workshop on Data Privacy Management (DPM 2016), vol.
9963, LNCS, 2016.

[3] M. Kantarcioglu and C. Chris. “Privacy-preserving distributed mining of
association rules on horizontally partitioned data.” IEEE Transactions on
Knowledge and Data Engineering (TKDE 2004), vol. 16, pp. 1026-1037,
2004.

[4] M.G. Kaosar, R. Paulet and X. Yi. “Fully homomorphic encryption based
two-party association rule mining.” Data & Knowledge Engineering, vol.
76, pp. 1–15, 2012.

[5] N.P. Smart and F. Vercauteren. “Fully homomorphic encryption with
relatively small key and ciphertext sizes.” Public Key Cryptography–PKC
2010, LNCS, vol. 6056, pp. 420–443, 2010.

[6] N.P. Smart and F. Vercauteren, “Fully homomorphic simd operations.”
Designs, Codes and Cryptography. vol. 71, no. 1, pp. 57–81, 2014.

Figure 2. Comparison of execution time

Figure 3. Comparison of memory usage

Figure 4. Comparison of #caches

