
1

XBird/D: Distributed and Parallel XQuery XBird/D: Distributed and Parallel XQuery

Processing using Remote ProxyProcessing using Remote Proxy

Graduate School of Information Science,

Nara Institute of Science and Technology, Japan.

Makoto Yui (Ph.D. Candidate)

Jun Miyazaki, Shunsuke Uemura, Hirokazu Kato

2

Outline

� Background & Motivation
� Open Problems
� Our Solution to Open Problems
� XBird/D Implementation
� Experimental Evaluation
� Conclusion

3

Background

As XML spreads over networks, the need to
integrate distributed and dynamic XML documents
is increasing

� Integration of (heterogeneous) biological databases
by XML

e.g., Integrating Genbank and Uniprot by Blast search results

� Display on-the-fly information of Web from
thousands of XML feeds for each user

e.g., aggregating the latest result of football games

Our assumptions

� XML data is primary data source
� Direct access to background databases is not allowed
� XML data is frequently changing

Biological data
bases receive

frequent upda
te/corrections

Biological data
bases receive

frequent upda
te/corrections

Current XM
L-feed read

ers

aggregate u
sers’ subscr

iptions

at hourly in
tervals

Current XM
L-feed read

ers

aggregate u
sers’ subscr

iptions

at hourly in
tervals

Examples include,

4

Motivation

To realize on-the-fly processing of thousands of distributed XML

documents, we apply a divide-and-conquer design paradigm

Motivating example

On-fly-processing of
thousands of XML feeds
using a PC-cluster

On-fly-processing of
thousands of XML feeds
using a PC-cluster

qa qg……

qh qn qy qz… ……

Dh1 Dhn… Dv1
Dhm…… …

Responsible for RSS data
in .COM domain

Responsible for ATOM data
in .biz domain

Filter results of sub-queries
so as to show the latest 50
news about a recent disaster

q
PE0

PE1 PE3

PE4 PE5 PE6 PE7

Divide a query into sub-
queries recursively

5

Open Problems and Our Solution

[1] Re' C, Brinkley J, Hinshaw K, Suciu D: Distributed XQuery, In Proc. IIWEB (2004).
[2] Zhang Y, Boncz P: XRPC: Interoperable and Efficient Distributed XQuery,
In Proc. VLDB (2007).

[3] Fernandez M, Jim T, Morton K, Onose N, Simeon J: Highly Distributed XQuery with DXQ,
In Proc. XIME-P (2007).

The prior approaches [1][2][3] commonly used
pass-by-value semantics

B) Overhead of encoding/decoding

C) Poor resource utilization

Pipelining using pass-by-reference

Direct result forwarding to reduce
the latency

Remote blocking-queue with which
processing rates of operators are managed

A) Limitation of inter-operator parallelism
due to lack support for pipelining

6

Explore open problem (A)

• What was meant by the limitation
of inter-operator parallelism?

• Why is pipelining indispensable?

7

q

qa qg……

qh qn qy qz
… ……

Blocking edge

Pipelinable edge

Pipeline chain

Dh1 Dhn… Dv1
Dhm…… …

Ph treats n data sources Pv treats m data sources

Remote Query Invocation

edgea

edgeh edgen

edgeg

Problems in Pass-by-Value Semantics

Pass-by-value semantics
involves blocking edges

Pass-by-value semantics
involves blocking edges

Consider the elapsed

time of qa

Out-of-order executionSe
qu
en
tia
lly
 e
xe
cu
te
d

Recursively defined

Problems

� Inter-operator parallelism is limited
� Depends on the most time-consuming edge
� Non-parallelized portion of queries restricts
the theoretical maximum speedups
(according to Amdahl’s law)

Problems

� Inter-operator parallelism is limited
� Depends on the most time-consuming edge
� Non-parallelized portion of queries restricts
the theoretical maximum speedups
(according to Amdahl’s law)

Recall the previous
example

LT(qa) represents
“Elapsed time of local
query processing”Edge involves latency

such as encoding/decoding
and network latency

8

Explore open problem (B)

How critical is the overhead of encoding
/decoding?

9

for $a in $doc/site/closed_auction/closed_auction
where $a/price/text() >= 40 return $a/price

Costs involved in Remote Query Execution

• Thus, each blocking edge of operators

can potentially be a bottleneck

We conducted a micro-benchmark, with using the following queries
where $doc locates an XML document generated by XMark SF=10,

to estimate the costs involved in remote query execution.

Brea
kdow

n the
 late

ncy

What this experiment showed is …

• The latency including encoding/decoding

is as same as query execution time

10

Explore open problem (C)

What is the resource utilization problem?

11

Resource Utilization Problems

� selecting low degrees of an operator parallelism

can lead to under-utilization of the system
and reduce throughput

Intuitions

� selecting high degrees of an operator parallelism

can spend “too many” resources to
one query and lead to high resource contention

Mehta M, Dewitt DJ: Managing Intra-operator Parallelism in
Parallel Database Systems, VLDB (1995)

Further details can be obtained in our paper
and the following paper,

Efficient r
esource u

tilization s
cheme an

d

processo
r allocatio

n scheme
are neede

d!

12

Our Solution for each Open Problem

A) Limitation of inter-operator parallelism due to
lack support for pipelining

B) Overhead of encoding/decoding

Pipelining using pass-by-reference

Direct result forwarding to reduce
the latency

C) Poor resource utilization

Remote blocking-queue with which
processing rates of operators are managed

Our contribution consists of the above three
techniques

13

Handling a reference to a remote sequence as if
it were on a local site

Reference

:Sequnece

Entity

:Sequence

PHYSICAL

References ReferencesBytesItems Items

P2: send()

P3: fetchItems()P1: fetchItems()

Client

:Communicator

Server

:Communicator

F1: nextItem()

FUNCTIONAL

A) Pass-by-Reference using a Remote Proxy

G. Graefe. `Volcano-an extensible and parallel query evaluation system'.
Knowledge and Data Engineering, IEEE Transactions on 6(1):120-135. 1994

LOGICAL L2: fetchItems()

L3: nextItem()L1: nextItem()

Server

:Proxy

Client

:Proxy

Proxy fetches items at a time
to reduce RPC latency

Communicator encapsulates the
underlying protocol (e.g., RMI)

14

Our Solution for the Problem (C)

A) Limitation of inter-operator parallelism due to
lack support for pipelining

B) Overhead of encoding/decoding

Pipelining using pass-by-reference

Direct result forwarding to reduce
the latency

C) Poor resource utilization

Remote blocking-queue with which
processing rates of operators are managed

15

Result Proxy

Sequence
Peer1

Peer2

Result Entity

Sequence

Operator

item

Operator

(b) consume
items

(c) fetch items

(a) Produce items
asynchronously

Producer

Thread

Consumer

Thread

This queue is a bounded-size

blocking-queue

Blocked if the

queue is full

Blocked if the queue

is empty and not

reached end

B) Asynchronous Production and Queue Management

Producing
Operator

Consuming
Operator

Avoiding oversupply and
undersupply

Avoiding oversupply and
undersupply

A general consumer
and producer problem

16

Our Solution for the Problem (B)

A) Limitation of inter-operator parallelism due to
lack support for pipelining

B) Overhead of encoding/decoding

Pipelining using pass-by-reference

Direct result forwarding to reduce
the latency

C) Poor resource utilization

Remote blocking-queue with which
processing rates of operators are managed

17

PE1

PE2

PE 3 PE 4

P1 P2

P3

Entity Sequence

Pipelined chain

Proxy Sequence

Pass-by-Reference

Processor element

Select1

Reduce

Select2

Filter
PE1

PE 3 PE 4
E1

P1

E2

P2

Direct result forwarding

Select1

Reduce

Select2

Filter

E1 E2

C) Direct Result Forwarding

Execution Relo
cation

Reduce operator does not
cause access to the local
resources, thus the
execution is re-locatable

By forwarding the reduce
operator to the upper operator,
redundant encoding and
decoding are eliminated!

18

Experimental Evaluation - Settings

Select1

Reduce

Select2

Filter

CPU: Pentium D 2.8GHz
(except that PE2 equips Athlon 64 X2 2.4 GHz)

Memory: 2GB
OS: SuSE Linux 10.2
Runtime: Sun JDK 1.6

PE3 PE4

PE2

PE1

In order to evaluate the effectiveness of our three enhancements,
we conducted performance comparisons to MonetDB/XRPC.

one of the state-of-the-art distributed
XQuery processors that represents
pass-by-value semantics.

Zhang Y, Boncz P: XRPC: Interoperable and Efficient Distributed XQuery,
In Proc. VLDB (2007).

Today’s normal PC setting

19

Experimental Evaluation - Results

Our pass-by-reference implementation using a remote proxy
shows significant improvements on the elapsed time.

Our remote proxy strategy (Proxy)
executed about 9 times faster than a
pass-by-value evaluation strategy.

Our remote proxy strategy (Proxy)
executed about 9 times faster than a
pass-by-value evaluation strategy.

The remote query evaluation by pass-by-value semantics
computed and produced the whole results at a time,
while not all of them are used in the later computation.

Direct result forwarding eliminated the redundant encoding/decoding
on PE2 and the overhead of mediated communication.

Combination of “Remote Proxy” and
“Direct result forwarding” obtained
about 22 times better performance
than the competitive method (XRPC).

Combination of “Remote Proxy” and
“Direct result forwarding” obtained
about 22 times better performance
than the competitive method (XRPC).

Moreover, only our system using pass-by-reference
semantics could process 100 concurrent requests.

Pass-by-value semantics implementations suffered
from frequent swap-in/swap-out due to their poor
resource utilization

Moreover, only our system using pass-by-reference
semantics could process 100 concurrent requests.

Pass-by-value semantics implementations suffered
from frequent swap-in/swap-out due to their poor
resource utilization

Lazy evaluation
effects!

20

Conclusion

We proposed an efficient distributed XML query processing
strategy using a remote proxy and the other two techniques

Our experimental results showed up to 22x speedups
compared with a competitive method in a certain situation,
and demonstrated the importance for distributed XML
database systems to take pass-by-reference semantics
into consideration.

Future work

• Dynamic execution dispatching of remote query processors
taking system resources and utilizations

� Development of a selection model of execution strategies

� Asynchronous item production and its queue management
� Direct result forwarding

We have tried other methods.
But the competitive system that is
currently available and works properly
is only MonetDB/XRPC.

21

Thank you for your attention

XBird will be released as an open source software on

http://db-www.naist.jp/~makoto-y/proj/xbird

I have a demo-video in which XBird/D executed
180 remote queries on Niagara T2 in 5 seconds.
If you are interested in that, please contact me later.

Any questions or suggestions?

22

23

declare variable $colname := "/dews2008/xmark10.xml";
declare variable $remote-endpoint := "//niagara:1099/xbird/srv-01";
fn:subsequence(

execute at $remote-endpoint
{

for $a in
fn:collection($colname)/site/closed_auctions/closed_auction

where $a/price/text() >= 40
return $a/price

}
,1,1000
)

Server
Client

24
Mehta M, Dewitt DJ: Managing Intra-operator Parallelism in
Parallel Database Systems, VLDB (1995)

Resource utilization problem

σSelect

Join

Join

tuple

tuple

Produced tuple

Consumed tuple

� Oversupply of tuples
Executed at
different PEs

� Undersupply of tuples

Too much production wastes
system resources

Consumer tends to be idle

