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ABSTRACT
In this paper, we focus on an aspect of distributed XQuery
processing that involves data exchanges between processor
elements. We first address problems of distributed XML
query processing and explain how the problems differ from
traditional database problems. Then, in order to achieve
efficient and transparent data exchange, we adopt the use
of remote proxy, in which each shipped data is wrapped in
a proxy sequence, and the proxy sequence is returned to
the remote peer. When accessing the proxy sequence, ac-
tual results (possibly partial results) are fetched from a data
provider, and then the data provider evaluates its entity se-
quence in a call-by-need fashion. Our scheme allows parallel
query execution and reduces network traffic and redundant
buffer utilization by exchanging required data directly be-
tween a consumer and a provider.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—
Distributed databases, Query processing

General Terms
Design and Implementation of Distributed Database

Keywords
Distributed and parallel database, XML query processing,
Lazy evaluation

1. INTRODUCTION
As a result of wide adoption of XML, XML data has been

spread over computer networks. It has produced the need
to integrate distributed and dynamic XML documents. For
example, users might want XML feed-readers to show more
fresh and/or on-the-fly information (e.g., recent disaster in-
formation or latest results of sport games) through their
thousands of RSS/ATOM subscriptions. However, current
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feed-readers do not aggregate their subscriptions in real-time
but at hourly intervals (Bloglines [1] currently checks sub-
scriptions once an hour). Another example is found in in-
tegration of biological databases. Most biological databases
today have the ability of publishing XML to support integra-
tions among heterogeneous data-sources, and each of them
receives frequent updates/corrections from individual labo-
ratories around the world. Therefore, integration systems of
biological databases must take data freshness into account.

Considering such situations, it is doubtful that on-the-fly
processing for thousands of XML data is realistic. It would
be impossible with current XML query processor technolo-
gies. Because, as far as we know, there is no XML query
processor tackling both inter-operator parallelism [2] and
distributed query processing, both of which are indispens-
able to solving the underlying problems as explained below.

To achieve on-the-fly XML query processing of thousands
of XML data that cannot be processed by an XQuery pro-
cessor on a single computation node, we apply a divide-
and-conquer approach that divides a query into sub-queries,
and then, executes these sub-queries on multiple compu-
tation nodes as in Figure 1. However, such a hierarchical
distributed system must deal with the following technical
issues:

• First, partitioned computation requires that query pro-
cessors exchange intermediate results in order to pro-
duce its final result. The time for exchanging interme-
diate results cannot be ignored. In particular, data ex-
changing of XQuery Data Model (XDM) [3] instances
requires long CPU time because, in contrast to rela-
tional databases, XML databases must deal with non-
scalar data types such as XML trees, which basically
treat scalar data types. Therefore, encoding and de-
coding of XDM instances, in general, spend more CPU
time than those for a relational model. According to
the findings in [4], parsing an XML document typically
takes 175K CPU instructions per kilobyte, which is as
of the same order as inserting a row into a relational
table (30K to 200K instructions). Hence, each edge of
two operators can potentially be a bottleneck.

• The second issue is that CPU-utilization of current
query processors cannot exploit inter-operator paral-
lelism in addition to divide-and-conquer parallelism.
Regarding the divide-and-conquer strategy, a sub-query
qa can execute its sub-queries (qh · · · qn) in parallel and
even out-of-order (see Figure 1).

Here, we use the notations T (qa), LT (qa) and T (edgea)
for elapsed time of a query qa at peer pa, that of lo-



cal query processing of qa, and that at an edge edgea,
respectively. When we do not consider pipeline paral-
lelism, T (qa) is recursively defined as follows:

T (qa) =

max((T (qh) + T (edgeh)), · · · , (T (qn) + T (edgen)))
| {z }

elapsed time of the most time-consuming edge

+LT (qa)

According to this formula, computation time of a node
depends on the most time-consuming edge. Taking
Figure 1 as an example, local query processing of qp0

is blocked and its CPU resource tends to be idle un-
til the last intermediate result is returned. Moreover,
the non-parallelized part of queries, e.g., LT (qa) in
the above example, restricts the theoretical maximum
speedups. According to Amdahl’s law [5], the expected
speedups by parallel query execution are often limited
by the non-parallelized part. Therefore, to leverage the
computation power of current multi-processors includ-
ing multi-core processors, pipelining is indispensable.
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A user query q is divided into sub-
queries qa, · · · , qz recursively. The symbols
p0, pa, · · · , ph, · · · , pz denote the peers in which
a query is executed. The symbol D such as Dhn

represents a data-source.

Figure 1: Divide-and-conquer and pipeline paral-
lelism

Considering the above aspects, in this paper, we focus
on the data exchanges between processor elements in dis-
tributed XQuery processing, which so far have not been
carefully discussed in the literature. As an alternative to
previous methods, we propose an efficient data exchange
method using remote proxy, in which each entity or result
sequence is wrapped in a proxy sequence and the proxy is
returned to the remote peer. When accessing the proxy se-
quence, actual results (possibly partial results) are fetched
from the data provider. The use of remote proxy brings the
following three advantages:

• Our scheme allows parallel query execution, which sup-
ports several kinds of parallelisms, e.g., independent-
operator and pipeline parallelism.

• Entity sequences are computed in a demand-driven
manner. A new FIFO entry of the entity sequence 1 is
requested when the entry is consumed and dropped to

1In XDM [3], a result is a sequence containing zero-or-more
items. The items are consumed by an operator (iterator) in
a FIFO manner. We call the remaining items “FIFO entry.”

the low watermark level. Its sophisticated and built-
to-order mechanism utilizes the server’s resources such
as memory and CPUs.

• Our method can reduce network traffic and redundant
buffer occupation by directly exchanging required data
between a consumer and a provider, which are manda-
tory for the previous pass-by-value data exchanges [6,
7, 8]. Avoiding intermediary trades reduces both net-
work traffic and network latency as well as redundant
computations such as encoding and decoding in medi-
ator nodes.

We have implemented the proposed method on the top
of our practical implementation of a native XML database
system 2. Our experimental results show up to 22x speedups
compared with competing methods. We demonstrate the
importance for distributed XML database systems to take
pass-by-reference semantics into (re-)consideration.

The rest of this paper is organized as follows: Section 2
introduces related works and identifies open problems of dis-
tributed XML query processing, and then, we briefly men-
tion our solutions for the problems. In Section 3, we de-
scribe details of our implementation including our language
extension to XQuery and distributed query optimizations.
In Section 4, we provide experimental results and their eval-
uation, and conclude in Section 5.

2. RELATED WORK AND OPEN PROBLEMS
In this section, we address the open problems of distributed

XQuery processing in previous works, and propose our so-
lution for these problems. We also refer to related works.

Figure 2 depicts a typical remote query execution flow
with pass-by-value semantics. Pass-by-value semantics has
been used for the evaluation strategy of previous distributed
XML query processors [6, 7, 8]. The problems underlying
these strategies are as follows:

• Limited inter-operator parallelism
With a pass-by-value evaluation strategy, a remote query
is executed sequentially as in Figure 2. Therefore, dur-
ing processing on Server A, Server B becomes idle.
In contrast, Server A tends to be idle while Server B
processes a query. In addition, as we mentioned with
Figure 1, current XML query processors using pass-by-
value strategy cannot exploit pipeline parallelism, and
thus, inter-operator parallelism is limited for nested
query executions. We examined how long of a query
processing time it takes to execute the following query
at a remote peer where $doc locates an XML docu-
ment of scale factor (SF) 5 or 10 of XMark [9]. The
transferred data size of the resulting XDM instances
were 2164 KB (SF=5) and 4307 KB (SF=10).

for $a in $doc/site/closed_auctions/closed_auction
where $a/price/text() >= 40 return $a/price

The result, as in Figure 3, shows that, at least in our
experience, the latency including encoding and decod-
ing is the as same as the query execution time at a
remote peer. This supports our claim that each edge
of Figure 1 can be a potential bottleneck. Moreover,
since each edge becomes a blocking edge (see Figure
1), it remains a limited inter-operator parallelism with
the pass-by-value strategy. To solve this problem, we

2It will be released at:
http://db-www.naist.jp/˜makoto-y/proj/xbird/



take an advantage of pipeline parallelism and inter-
operator parallelism into our remote proxy. Due to
the remote proxy, our systems can make each edge of
Figure 1 pipelinable, and thus, all computation nodes
can theoretically run in parallel.

• Poor resource utilization
In a multi-user environment, multiple concurrent queries
consume lots of system resources. Thus, it is impor-
tant to allocate adequate CPU and memory resources
especially under current multi-processor or multi-core
architectures. For example, selecting low degrees of
an operator parallelism can lead to under-utilization of
the system and reduce throughput. On the other hand,
high degrees of parallelism can spend “too many” re-
sources on one query and lead to high resource con-
tention. With the current pass-by-value strategy, such
resource contentions frequently occur, for instance, at
A and B in Figure 2. Suppose that encoding entire
parametric sequences at A, Server A consumes lots of
CPU cycles and memory space, and then remote query
execution at Server B is blocked until the encoding fin-
ishes. On decoding receiving parameters at Server B,
Server B may suffer from less available memory. Such
a situation actually happened in our later experiment
in reality (see Section 4). To deal with the problem,
we propose an efficient resource utilization scheme us-
ing remote blocking-queue with which processing rates
of operators are managed.

• Encoding and decoding overhead
Previous research used to take XML formats for data-
exchanges between processor nodes [6, 7, 8]. However,
as mentioned in [4], decoding XML inputs consumes
lots of CPU cycles. In [10], Bayardo et al. asserted
that binary encoding of XML would appear to provide
performance benefits to most applications without any
significant drawbacks other than compromising a view-
source principle. On the contrary, a naive (blocking)
binary encoding may prevent pipelined XML stream
processing. We thus take an incremental encoding/de-
coding scheme that incrementally converts an XDM
instance to a SAX-like event (binary) stream. In ad-
dition, we propose an efficient direct result forwarding
mechanism for the pass-by-reference in Section 3.

3. IMPLEMENTATION OF XBIRD/D

3.1 The Language Extension: BDQ
XBird/D extends the XQuery language [11] to support

remote query execution. We call the extension for XBird
Distributed Query, BDQ for short. Figure 4 describes the
grammatical extension to PrimaryExpr of XQuery. BDQ-
Expr means that Expr2 is to be executed at a remote peer P,
where the endpoint of P is fn:string(fn:exactly-one(Expr1)).
The endpoint takes a URL format of the form:
//host :port/name where name is the binding name of re-
mote service that is bounded at the service registry identi-
fied with the pair of host and port .

3.2 Remote Proxy
As mentioned in Section 2, our distributed XQuery pro-

cessor XBird/D employs remote proxy to achieve an inter-
operator parallelism.

The base (single) XQuery processor, which is noted as
XBird, is based on the Volcano iterator model and employs
an iterative query processing model based on an iterator
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Server A accepts a query including BDQExpr (explained
later Section 3.1)1, then a local query processor evaluates
its query2. At the evaluation of BDQExpr, its computed
parameters 1L and compiled expression are shipped (i.e.,
encoded3 and transferred4) to the remote Server B. Then,
Server B decodes the encoded parameters 1X and constructs
its XDM instance 1R5. After that, Server B evaluates the
received compiled expression6. Then, the intermediate re-
sult 2R at Server B is returned to the Server A7,8. Server
A decodes the response 2X of Server B and constructs its
XDM instance 2L9. Finally, Server A continues to evaluate
the entire expression2 and return the result 3L to a user
program10.

Figure 2: A typical remote query execution flow
with pass-by-value semantics

tree, which is similar to the BEA/XQRL XQuery processor
[12] in which pipelined processing operators deal with loops,
axis accesses, etc. The iterator model allows lazy evaluation
of expressions, and also plays an important role in XBird/D
architecture.

We describe how the pass-by-reference evaluation seman-
tics is achieved by using remote proxy. Remote proxy is
not a unique feature for XBird/D. It is an extension of the
well-known proxy design pattern for distributed object com-
munications [13], and was not developed in the context of
distributed XML query processing. It is impossible to ac-
complish inter-operator parallelism only with remote proxy.
Therefore, we try to use a combination of remote proxy and
an asynchronous entity production of intermediate results,
as is described next.

Asynchronous Production and Queue Management
We assume that items in a sequence are stored in FIFO
queue in which each item is consumed from an another op-
erator processed by a consumer.

Figure 5 gives an overview of our remote proxy implemen-
tation. When executing a remote query, the intermediate
result (result entity sequence) is wrapped with a proxy and
the proxy object (result proxy sequence) is returned to the
caller (Peer1). Then, the remote operator asynchronously
produces the items of the result entity sequence until the
queue becomes full. When the queue becomes full, the pro-
ducer thread is blocked until space becomes available in the
queue(a). On the other hand, retrieving items is blocked
until the queue becomes non-empty(c). The remote proxy
fetches remote entries(c) when the local queue is empty at
timing (b). The size of fetched items can be configured for
each query by specifying initial fetch size and its growth fac-
tor. The fetched size automatically grows according to the
parameters up to a specified threshold. This feature aims at
reducing client/server communications. Due to the advan-
tages of this simple but effective queue management, relying
on remote blocking-queue, our system can utilize system re-
sources by avoiding oversupply and undersupply.



Exec: Elapsed time for remote query execution at a remote peer.

Latency: Latency of remote query execution including encod-

ing/decoding and network latency.

Print: Elapsed time of serializing an XDM instance to a file.

ETC : Elapsed time including compilation and other (local) query

execution footprints.

Figure 3: Breakdown of remote query processing
time (in msec.)

BDQExpr ::= “execute at” Expr1 “{” Expr2 “}”
PrimaryExpr ::= Literal | .. | Constructor | BDQExpr

Figure 4: BDQ grammar extensions

Direct Result Forwarding
As we have already mentioned in Section 2, XBird/D has
a direct result forwarding feature to reduce latency, e.g.,
encoding/decoding and network latency, in the distributed
query execution. We explain how a query is processed in dis-
tributed and nested query execution in detail using Figure 6.
In Figure 6, filter, reduce, select1 and select2 functions are
executed at PE1, PE2, PE3 and PE4, respectively. The left
half of Figure 7 expresses the nested operation tree. The re-
duce function collects closed auction and open auction and
returns the first 1000 items for each. Since this reduce func-
tion does not cause local resource access (fn:doc and/or
fn:collection), the execution is relocatable. This optimiza-
tion is performed not at the compilation time but at exe-
cution time 3. Since our XQuery processor is implemented
based on the Volcano iterator model, the result iterators are
calculated by lazy evaluation in call-by-need fashion. For
the relocation of execution, we just forward the iterators P1
and P2 to the upper operator (on PE1, in this case), and
evaluate them on PE1. The intermediate results are fetched
from PE3 and PE4 directly. This optimization is effective
since encoding and decoding on PE2 can be avoided. Recall
that it takes the majority of total elapsed time in remote
query execution for encoding and decoding (see Figure 3).

A previously proposed system [8] can use an intensional
expression that was originally proposed in [14]. The inten-
sional answer can make a server shift its work to a client
by mutating the result expression with the intermediate re-
sults. For example, the intensional expression transfers the
computation of the reduce function by mutating the result

3The advantage of this dynamic relocation is that it can
take execution time information into consideration.
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Figure 5: Server/Client interaction between proces-
sor elements using a remote proxy

expression as follows:

fn:sequence( (<closed_auction> ... </closed_auction>,
<closed_auction> ... </closed_auction>), 1, 1000),

| (<open_auction> ... </open_auction>,
<open_auction> ... </open_auction>), 1, 1000) )

However, according to our experience, the benefit of an
intensional answer is limited where the result is small, since
it requires additional (and expensive) encoding and decoding
of the intensional results. The encoding and decoding often
waste more server resources than evaluation of a query. In
contrast, our iterator forwarding can receive the benefits of
lazy evaluation without such a significant drawback.

declare function bdq:select1() {
execute at $PE3 {

fn:collection($col)/site/closed_auctions/closed_auction
}

};
declare function bdq:select2() {

execute at $PE4 {
fn:collection($col)/site/open_auctions/open_auction

}
};
declare function bdq:reduce() {

execute at $PE2 {
( fn:subsequence(bdq:select1(), 1, 1000)
| fn:subsequence(bdq:select2(), 1, 1000) )

}
};
declare function local:filter() {

for $a in bdq:reduce()
where $a/seller/@person >= "person10000"

or $a/buyer/@person >= "person10000"
return $a

};
local:filter() (: execute at PE1 :)

Figure 6: Nested remote query execution example

4. EXPERIMENTAL EVALUATION
In order to evaluate the effectiveness of our enhancements,

i.e., remote proxy and direct result forwarding, we conducted
performance comparisons to MonetDB/XRPC [7] version
4.18.1, which is one of the state-of-the-art distributed XQuery
processors.

As the experimental environment, we used four PCs. We
denote the XQuery processor running on each PC as PE1
. . . PE4. Each PC consists of Pentium D 2.8GHz CPU,
2GB of memory, SuSE Linux 10.2 as an OS, and JDK 1.6 as
a runtime system, connected on 1Gb/s Ethernet, except for
PE2, which is equipped with an Athlon 64 X2 2.4GHz CPU.
We used a query in Figure 6 for the evaluation of XBird/D
and the equivalent query for MonetDB/XRPC. As for the
data set, we used a 1.1GB XML document generated by the
data-generator of XMark [9] where the scale factor was set
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to 10. We bound the generated document to variable $col
in Figure 6. The documents were loaded to each database
instance in advance on PE3 and PE4 where both MonetDB
and XBird were running.

The summarized results are shown in Figure 8. We com-
pared four evaluation strategies including remote proxy (Proxy),
remote proxy with direct result forwarding (Proxy+Forward),
our implementation of pass-by-value semantics (Value), and
MonetDB/XRPC by pass-by-value semantics [7] (XRPC).

As in Figure 8, our pass-by-reference implementation us-
ing remote proxy shows a significant improvement on the
elapsed time. This is because our system could eliminate un-
necessary computation at PE3 and PE4, as a result of apply-
ing lazy evaluation to distributed XQuery processing. The
remote query evaluation by pass-by-value semantics com-
puted and produced the entire results at one time, while
not all of them are used in the later computation. It is
clearly inefficient, and explains why our remote proxy eval-
uation strategy (Proxy) executed about 9 times faster than
our pass-by-value evaluation strategy. Moreover, direct re-
sult forwarding eliminated the redundant encoding/decoding
on PE2 and the overhead of mediated communications. As a
result, our system could finally obtain about 22 times better
performance than the competitive method (XRPC).

In addition, only our system using remote proxy can pro-
cess 100 concurrent query requests using 30 threads in 160
seconds where the maximum and average elapsed times are
53.76 and 36.75 seconds, respectively. Both of the pass-by-
value semantics implementations (Value and XRPC) suffer
from a frequent swap-in/out 4 due to poor resource utiliza-
tion. We, thus, confirm the advantage of our methods in a
certain situation.

5. CONCLUSION
In this paper, we proposed an efficient distributed XML

query execution strategy using remote proxy. Our experi-
mental results show up to 22x speedups compared with com-
petitive methods, and demonstrated the importance for dis-
tributed XML database systems to take pass-by-reference se-
mantics into consideration. Furthermore, our enhancements
(asynchronous production managed by remote blocking-queue)
can utilize system resources efficiently with supporting inter-
operator parallelisms.

Issues to be explored include dynamic execution dispatch-
ing of remote query processors taking system resources and

4XRPC did not return the first response of 5 concurrent
queries in 10 minutes.

Figure 8: Comparison of four evaluation strategies

utilizations (e.g., CPU utilizations, free memory space, and
specs) of the participating nodes into account, and develop-
ment of a selection model of execution strategies.
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