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Abstract

We propose an XML storage scheme based on Docu-
ment Table Model (DTM) which expresses an XML doc-
ument as a table form. When performing query process-
ing on large scale XML data, XML storage schemes on
secondary storage and their access methods greatly affect
the entire performance. For this reason, we developed an
XQuery processing scheme in which an XML document is
internally represented as a set of DTM blocks and can be
directly stored on secondary storage. Our scheme is tai-
lored for read-oriented workloads, and an XML document
is stored on disks as arrays of nodes. We analyzed the ac-
tual data access patterns to DTM appeared in processing
XML queries, and employed the combination of informed
prefetching and scan-resistant buffer management based on
the analysis. Our experimental results showed that our stor-
age scheme outperforms competing schemes with respect to
I/O-intensive workloads, and our sophisticated prefetching
and caching increase overall throughput without significant
drawbacks.

1 Introduction

Recently increasing use of XML has heightened the need
for storing and querying large amount of XML data effi-
ciently. Previous researches have mainly been focused on
indexing paths and optimizing XML queries. On the other
hand, an underlying storage representation significantly im-
pacts on XML query processing, and thus, it is important to
explore storage schemes for XML documents.

Several storage schemes have been proposed for XML
documents[14, 11, 10, 16]. However, to the best of our
knowledge, there has been no careful study on the ac-
tual data access patterns of XML query processing (e.g.,
XQuery). It has still been an open issue as to which strat-
egy is suitable for XQuery processing.

In designing our storage scheme, we made the following
architectural decisions.

• Our scheme aims to be tailored for read-only and/or

read-most workloads. This is based on the fact that
XML databases are often required for managing ex-
isting XML documents received from other organi-
zations (e.g., Electric Data Interchanges). In such
situation, node-level updates (i.e., DML operations)
are not always required. However, document-level
updates (i.e., bulk insertions/deletions and document
replacement) are considered to be required. Read-
optimized database design has been suggested for rela-
tional database systems, such as [7], but not well stud-
ied for XML database systems. Therefore, we propose
an efficient XML database system optimized for read-
oriented workloads.

• We focus on iterative XQuery processing in which an
operator tree consists of iterators. This is because
many XQuery processors[5, 12], including our imple-
mentation, employ an iterator model and a tuple-at-a-
time semantics instead of a set-at-a-time semantics.

Considering the above aspects, we propose an XML stor-
age scheme based on Document Table Model (DTM) which
expresses an XML document as a table form. A DTM ta-
ble is internally represented as an array of DTM blocks, so
that it can be directly stored on secondary storage. This
straightforward approach enables effective prefetching of
DTM blocks. However, it is known that there are inter-
actions between prefetching and caching, and traditional
cache replacement policies like LRU do not work well with
prefetching[4]. It is because prefetched disk blocks need
to be stored on the cache, and prefetched entries can po-
tentially compete for (hot) cache entries. On the other
hand, the benefit of prefetching and caching can coexist
by using a scan-resistant cache replacement policy in cer-
tain situations[3]. To deal with this problem, we conducted
the combination of informed (i.e., directed) prefetching and
scan-resistant caching.

We have implemented a native XML database system,
named XBird1, using the proposed storage scheme. While
XBird supports indices, in this paper, we focus on XML
storage schemes and their access methods without indices

1XBird will be released at: http://db-www.naist.jp/˜makoto-
y/proj/xbird/



to evaluate the performance. Since XML queries require
them for string-value calculation and serialization, the per-
formance often depends on the basic access methods.

Our experimental results showed that our storage scheme
outperforms competing schemes under I/O-intensive work-
loads, and our sophisticated prefetching and caching in-
crease overall throughput without significant drawbacks.

The rest of the paper is organized as follows: in Section
2, we introduce a logical design of DTM. In Section 2.3,
we give an analysis of data access patterns in XQuery pro-
cessing. Section 3 presents our physical storage scheme and
its access methods. In Section 4, we provide experimental
results and their evaluation. We introduce related work in
Section 5 and conclude in Section 6.

2 Logical Data Structure

2.1 Document Table Model

An XML document is represented as a variant of Docu-
ment Table Model (DTM) in our proposed scheme. DTM
was originally used in Apache Xalan XSLT processor[2]. It
expresses an XML document as a table form, while previ-
ous Document Object Model (DOM) regards an XML tree
as an object tree.

Since DTM table consists of primitive data types, DTM
can avoid the footprint of objects, such as object instanti-
ation and memory consumption, which are mandatory to
DOM. Therefore, popular XQuery/XPath processors[12, 2]
adopt either DTM or a similar internal data structure to
DTM. However, these processors do not consider use of
secondary storage to manage large scale XML data. To deal
with this issue, we aim at a natural extention of DTM by
taking account of secondary storage.

2.2 Internal Organization

Figure 1 shows an overview of our system organization.
Figure 2 depicts an example of an XML tree labeled in
depth-first search manner. In Figure 2, the symbols E and
T indicate element nodes and text nodes, respectively. The
upper half of Figure 1 represents the DTM associated with
the XML tree illustrated in Figure 2.

A DTM table consists of four integer arrays (see Figure
1). An index of these arrays indicates a node handle, and
thus, XBird requires 16 bytes per an XML node when an
integer is 4 bytes long.

The first TY PE row represents a node type, i.e., ei-
ther E or T , and the following attributes: FIRST ENTRY
flag, LAST ENTRY flag, HAS CHILD flag, the number of
namespace declarations, and the number of child elements.
The FIRST ENTRY and LAST ENTRY flags are used to
determine whether a sibling node exists on the left or right.
The HAS CHILD flag denotes whether the node has child
node(s) or not. All these data are compacted and stored into
an integer in a bitwise manner.

Figure 1. Internal organization of XBird
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Figure 2. An XML tree labeled in depth-first
order and its fragmentation examples

The second PARENT and the third NEXTSIB rows
represent the index to parent nodes and that to the next sib-
ling nodes, respectively. The fourth row keeps a content ID
(CID) which indicates a unique identifier for QName and
character string.

Character strings in XML data are converted into chunks.
A CID is attached to each string, and then the strings
are managed by the string management module, named
StringChunk. If the length of a string exceeds the system
threshold (512 bytes by default in our current implementa-
tion), the string is compressed by LZF algorithm[1] so that
memory consumption can be suppressed.

QNames are managed in a unit of a collection which
corresponds to the directory of file system to improve
space efficiency. We call the QName management mod-
ule QNameTable. A QNameTable generally fits in memory.
Thus, it is mapped to memory while processing the corre-
sponding collection.

2.3 Access to DTM

The access to a DTM table is based on operations to ac-
quire a numerical value related to a specified node, such as



a CID or a parent value. For example, QName and charac-
ter string are acquired from QNameTable and StringChunk,
respectively, by using a CID as a key. Axis processing is
based on offset calculation by referring to attributes such as
parent and next-sibling values. Thus, the logical data struc-
ture, i.e., DTM, and its operations are equipped in the query
processor.

All axis operations can easily be implemented by the
combinations of the following five core functions in our
DTM variant. The functions firstChild, lastChild, nextSi-
bling, parent, and previousSibling are used to obtain
youngest child, eldest child, next elder brother, parent, and
younger brother, respectively. The algorithms of frequently
used functions firstChild, nextSibling, and parent are shown
in Figure 3. Using these functions, axis processing, such
as parent, child, next-sibling, etc, can be implemented as a
simple offset calculation.

Algorithm Algorithm of primary axis accesses

1. const BLOCKS PER NODE = 4;
2. const PARENT OFFSET = 1;
3. const NEXTSIB OFFSET = 2;
4. function firstChild(curnode) {
5. code := getCol(curnode);
6. if(!hasChild(code))
7. return nil;
8. namespaces := getNamespaceCount(code);
9. attributes := getAttributeCount(code);

10. addr := curnode + ((namespaces + attributes) + 1)
11. * BLOCKS PER NODE;
12. return addr;
13. }
14. function nextSibling(curnode) {
15. return getCol(curnode + NEXTSIB OFFSET);
16. }
17. function parent(curnode) {
18. return getCol(curnode + PARENT OFFSET);
19. }

Figure 3. Algorithm of primary axis accesses

Note that, in Figure 3, the function getCol acquires
an array element specified by a node handle. The func-
tion hasChild judges whether the node has a child or
not by using the bit flag. The functions getNamespace-
Count and getAttributeCount acquire the number of names-
pace declarations and attributes, respectively. The constant
BLOCKS PER NODE shows the number of array elements
consumed by each node. The remaining constants PAR-
ENT OFFSET and NEXTSIB OFFSET represent the off-
sets to identify the location of the parent and next-sibling
values, respectively.

In order to design an efficient XML storage and their
access methods, we preliminarily analysed access patterns
to DTM. The key issues to design the physical layout for
effective XML query processing are:

• Mapping DTM to secondary storage for iterative
XQuery processing, and

• Paging strategy between main memory and secondary
storage.

Our solution to the former issue is to store nodes in docu-
ment order, and for the second issue is to employ aggressive
prefetching I/Os. Here after, we discuss these key issues
by using the experimental results of 20 XQuery queries in
XMark benchmark[13].

In the experiment, as we set page size to 2KB, a page
has 512 DTM rows (see Figure 1). As for the experimental
data, we used 113MB of the XML document generated by
XMark where the scale factor (SF) is 1.

Figure 4 shows an overview of page access patterns of
XMark queries. The inset figure within Figure 4 depicts
the data access patterns of Q9 and Q10 both of which show
peculiar page access patterns.

The vertical and horizontal axes of the figure denote the
page ID that is to be accessed and time where accessing
one page is a unit of time. Since page IDs are numbered
in document order, the page with the lowest ID contains
the document root and its neighbors, and the last node is
allocated in the page with the highest ID. In other words,
the document order is reflected on the vertical axis. Seeing
in Figure 4, access patterns from lower left to upper right
are a common tendency among 18 queries, which means
that pages are requested in document order. Note that this
sort of access pattern is not unique to XMark queries, but
XBench[15] queries (both TC/SD and DC/SD) had also in-
dicated similar access patterns (details are omitted due to
lack of space).

Figure 4. Page access patterns of XMark
queries

2.4 Page Replacement Policy

Q9 contains a triple nested-loop, and thus, its locality of
reference tends to be low. Therefore, we could not make the
best use of the locality of reference, and it took long time
to process Q9 due to paging overhead. A natural question
is what algorithm is suitable for the buffer management of
XML query processing. LRU is widely used as a buffer



replacement policy even in XML databases[11, 10]. How-
ever, it is known that LRU does not work well for sequential
scans and large Inter-Reference Gaps (IRGs), while such se-
quential scans often appear in serialization and string-value
calculations in XML query processing. Moreover, standard
LRU is uncongenial to prefetching[4].

We compared the efficiency of LRU with that of scan-
resistant 2Q[9] with prefetching. The result showed that
2Q brought 10% on average and a maximum of 23.5% bet-
ter performance than LRU where SF is 10 for the XMark
benchmark. Therefore, we use 2Q in XBird as a page re-
placement policy.

3 Physical Storage

3.1 Storage Scheme

XBird internally treats XML documents as DTM. If
DTM is applied to the fundamental data structure of an
XML database, it needs to be persistent. In order to have
DTM persistent, it needs to be extended to secondary stor-
age. A simple solution is to decompose the DTM into mul-
tiple blocks. Then, paging these blocks has only to be per-
formed between main memory and secondary storage, as
shown in the lower half of Figure 1.

In our proposed system, each block of DTM is stored
on the secondary storage in document order. Here after, we
call our proposed scheme persistent-DTM, pDTM for short,
which follows well-known persistent-DOM (PDOM).

Since the block allocation policy of pDTM is based on
document order, it does not always place adjacent nodes to
the same or nearby block. A certain parent and its second
or higher children might be taken apart on secondary stor-
age. The reasons why we chose this allocation policy are as
follows:

• According to the analysis in Section 2.3, access pat-
terns in document order appear frequently.

• Node allocation in document order is suitable for
string-value calculation and serialization which are
mandatory for XML query processing.

Our XQuery processor employs an iterative query pro-
cessing model based on an iterator tree, which is similar to
BEA/XQRL XQuery processor[5] and Saxon[12] in which
pipelined processing operators deal with loops, axis ac-
cesses, etc. Since queries are processed in operators in a
tuple-at-a-time fashion, linear accesses in document order
are found in Figure 4.

For example, during a query evaluation of ‘site/regions’
pipelined XQuery processor accesses to nodes are
made in the following order: ‘site[1]/regions[1]’,
‘site[1]/regions[2]’, .., ‘site[last()]/regions[last()]’. Thus,
document-ordered storage model, i.e., pDTM model, fits
for iterative query processing more efficiently than other
strategies for most queries. In contrast, subtree-based

storage model is not suitable for depth-first traversal (see
Figure 2).

3.2 Physical Layout

The DTM table explained in Section 2.2 is internally
formed as a two-dimensional array (more specifically, Iliffe
vector[8]). The arrays of the second dimension consist of
pages. Each element of the first dimension holds a pointer
to each page. Since the pages that are not paged-in to main
memory are expressed as null values, the skeleton, i.e., the
first dimension, does not waste memory space.

The physical structure of DTM is divided into three lay-
ers as shown in Figure 5. A DTM row stores a record which
is identical to a node information. A page is the minimum
accessible data-unit of an I/O operation, which corresponds
to a disk block.

Figure 5. Physical structure of pDTM and its
prefetching

3.3 Physical Access

A page-in operation is performed only when a requested
DTM page does not exist in the page buffer (see Figure 1).
For a simple implementation of paging, a hook is inserted
just in front of getCol function, shown in Figure 3. The
algorithm of the hook for paging is shown in Figure 6.

The following four paging profiles are currently defined.
FORWARD profile is the default strategy that looks-ahead
the forward direction. REVERSE profile is used for reverse-
axis traversals which request nodes in reverse document or-
der (e.g., preceding). INDEX profile is for index lookups.
SERIALIZE profile is for retrievals of subtrees at serializa-
tion.

4 Experimental Evaluation

We implemented XBird in Java. In order to reveal the
potential performance of XBird and compare it to compet-
ing schemes, we used the XMark benchmark suite[13] for
evaluation. The experimental setting commonly used in this
paper is as shown in Table 1.



Algorithm Page-in Algorithm

IN: rowId OUT: page

1. const PAGE SHIFT := 9;
# following items of paging profile are dynamically configured
# by giving hints from the query processor.
2. readForwards := 32, readBackwards := 0;
# The hook to the getCol function.
3. pageAddress := rowId >> PAGE SHIFT;(a)

4. page := PAGE BUFFER.get(pageAddress);(b)

5. if(page == nil) page := readInPages(pageAddress);(c)

6. return page;

7. function readInPages(pageAddress)(d) {
8. fromPage := pageAddress - readBackwards;
9. toPage := pageAddress + readForwards;
10. for(k:=fromPage; k<=toPage; k++) {
11. page := readIn(k);
12. if(i == pageAddress) requiredPage := page;
13. PAGE BUFFER.putIfNotFound(k, page);
14. }
15. return requiredPage;
16. }

a) Calculate a page address from the requested row ID.

b) Retrieve the requested page from the page buffer.

c) If ‘page’ value is nil, then call the function readIn-
Pages to retrieve pages.

d) Retrieve pages from disk based on a paging profile. All
pages that are read from disk are placed to the PAG-
ING BUFFER using a page address as a key.

Figure 6. Page-in Algorithm

CPU Intel Pentium D 2.8GHz
OS SuSE Linux 10.2 (Kernel 2.6.18)

RAM 2GB
Hard Disk SATA 7200rpm

Java Sun JDK 1.6
JVM option -server -Xms1400m -Xmx1400m

Buffer size for DTM paging: 128MB
Cache size used by StringChunk module: 32MB

DTM page size 2KB
FORWARD readForwards: 32, readBackwards: 0
SERIALIZE readForwards: 64, readBackwards: 0

Table 1. Experimental setting

4.1 Comparison to Subtree-based scheme

In order to evaluate storage techniques themselves, we
compare XBird with Natix[10](version 2.1.1) by using
queries shown in Table 2 (These queries are introduced in
XPathmark[6]). Natix is a native XML database system im-
plemented in C++, and supports XPath 1.0. The unique fea-
ture of Natix is that it adopts a subtree-based storage block
allocation strategy. XBird was configured not to use indices
as to make it a fair comparison of XML storage methods,
because Natix 2.1.1 does not have indices.

The summarized results where the SF is 5 and 10 are
shown in Figure 7 and 8, respectively. Now, we focus on
Q2-Q14 and Q17 for discussion.

An important difference appears in the results of Q6, Q7
and Q14 which contain ‘//’. Because ‘//’ requests a lot of
blocks in a depth-first manner, the efficiency of handling
blocks, such as paging and buffer management, tends to ap-

pear remarkably. For Q2, Q5, Q14 and Q17 whose outputs
are relatively large, pDTM achieves better performance than
Natix because of the efficiency of serialization.

Natix shows a slightly good performance for Q4 which
contains following-sibling axis, due to its subtree-based
physical layout. Since child nodes are brought together
in Natix, the following-sibling axis can be processed ef-
ficiently. Recall that subtree-based layout is suitable for
breadth-first traversal of XML trees, but not for depth-first
traversal.

5 Related Work

Only a few native XML storages have been studied.
OrientStore[11] proposed a schema-guided storage method.
Their strategy called Logical Partition-Based Clustering uti-
lizes schema information, which clusters XML data into
schema blocks to reduce I/Os required for path processing
of XML queries. Though this storage technique is effective
for path processing, it is not efficient for string-value calcu-
lation and serialization which require document ordering.

Natix[10] is a well-known native XML database which
employs a subtree-based storage scheme. It divides an
XML tree into subtrees based on the physical page size,
so that each subtree fits into a page. Each page keeps the
pre-order property of the subtrees on secondary storage.

Zhang et al. proposed a fast tree pattern matching al-
gorithm, called next-of-kin (NoK) pattern matching, and a
succinct XML string representation scheme, called subject
tree[16]. In NoK, each page of subject trees is stored on sec-
ondary storage in the pre-order of XML trees. Though NoK
supports simple parent-child queries, they have mentioned
neither prefetching I/Os nor sophisticated buffer manage-
ment.

On the other hand, non-native XML storages have been
studied well, for example, in [14].

6 Conclusion and Future Work

In this paper, we proposed an efficient XML storage
scheme based on DTM for iterative XQuery processing.
We also analyzed access patterns that frequently appear
for XML queries. Our experimental results showed that
our storage scheme outperforms competing schemes in the
certain situation where lots of pages are required such as
queries contains ‘//’ or when serialized results are rela-
tively large. Furthermore, our enhancements (i.e., prefetch-
ing and scan-resistant buffer management) improved the
performance of query processing by 10% on average and
by 23.5% at maximum in our experiments. These results
demonstrate the importance for XML database systems to
take informed prefetching and scan-resistant caching into
consideration.

Issues to be explored include realization of automatic
database tunings such as buffer replacement policy and
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Query Output size Query expression
Id SF5 / SF10

Q1 15 / 12 /site/people/person[@id = ”person0”]/name/text()
Q2 241K / 482K /site/open auctions/open auction/bidder[1]/increase/text()
Q4 0 / 0 /site/open auctions/open auction[bidder[personref/@person = ”person20”]/following-sibling::bidder

[personref/@person = ”person51”]]/reserve/text()
Q5 666K / 1.3M /site/closed auctions/closed auction[price/text() >= 40]/price
Q6 6 / 6 count(//site/regions//item)
Q7 6 / 6 count(/site//description | /site//annotation | /site//emailaddress)

Q14 149K / 297K /site//item[contains(description, ”gold”)]/name/text()
Q15 42K / 80K /site/closed auctions/closed auction/annotation/description/parlist/listitem/parlist/listitem/text/emph/keyword/text()
Q16 9.3K / 20K /site/closed auctions/closed auction[annotation/description/parlist/listitem/parlist/listitem/text/emph/keyword/text()]/seller/@person
Q17 897K / 1.8M /site/people/person[homepage/text()]/name/text()

Table 2. XPath queries converted from XMark queries

prefetching strategy based on the online analysis of access
patterns.
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