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Abstract. We propose an efficient and secure frequent pattern mining
protocol with fully homomorphic encryption (FHE). Nowadays, secure
outsourcing of mining tasks to the cloud with FHE is gaining attentions.
However, FHE execution leads to significant time and space complex-
ities. P3CC, the first proposed secure protocol with FHE for frequent
pattern mining, has these particular problems. It generates ciphertexts
for each component in item-transaction data matrix, and executes nu-
merous operations over the encrypted components. To address this issue,
we propose efficient frequent pattern mining with ciphertext packing. By
adopting the packing method, our scheme will require fewer ciphertexts
and associated operations than P3CC, thus reducing both encryption
and calculation times. We have also optimized its implementation by
reusing previously produced results so as not to repeat calculations. Our
experimental evaluation shows that the proposed scheme runs 430 times
faster than P3CC, and uses 94.7% less memory with 10,000 transactions
data.

Keywords: Ciphertext packing · Fully homomorphic encryption ·
Frequent pattern mining · Privacy preservation · Cloud computing

1 Introduction

In the present era of big data, demand is increasing for outsourcing both data
storage and calculations to the cloud. Although such outsourcing is convenient
for users, there are security and privacy issues. Private information could be
obtained maliciously by data “snooping“ or covert monitoring. Thus, secure and
privacy-preserving outsourced calculation has become indispensable, regardless
of whether or not users trust the cloud.

In this paper, we focus on privacy-preserving data mining for outsourced
calculations [7]. Previous research on such data mining is classified into three
approaches: i) protecting input privacy, ii) protecting output privacy, and iii)
cryptosystems. Protecting input privacy preserves the input data on the user side
by abstraction, noise-addition or randomization [6, 16, 19, 21], while protecting
output privacy preserves mining results on the cloud side by either noise-addition
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or perturbation [3, 4]. The third approach, i.e., cryptosystems, preserves privacy
by executing mining algorithms on encrypted data [11, 12]. Each approach has
its advantages and disadvantages. While the computational costs of the input
and output privacy approaches are smaller than those of cryptosystems, full in-
put and output privacy cannot be guaranteed. Furthermore, mining result may
become ambiguous when input or output privacy is used. Finally, cryptosystems
require excessive computational time, albeit that they assure both secure com-
putation and mining accuracy. Based on the above considerations, we chose to
adopt a cryptosystem to assure the full privacy.

A fully homomorphic cryptosystem is one that handles unlimited numbers
of multiplications and additions of ciphertexts. Gentry [8] proposed Fully Ho-
momorphic Encryption (FHE), which has been widely adopted by many data-
mining researches for statistical calculations [15], machine learning algorithms [9,
13], and the frequent pattern mining [11, 14].

However, these FHE applications suffer from the limitations of the computa-
tional resources such as memory and storage. They also take excessively long to
execute because of large size ciphertexts and the significant number of associated
operations. The data mining process itself also involves a high computational
cost when handling large data sets. As a secure mining protocol, Liu et al. [14]
proposed the P3CC frequent pattern mining scheme over FHE, which was im-
plemented over DGHV integer-based FHE by van Dijk et al. [20]. It encrypts
plaintexts component-wise in the item-transaction matrix data, and then applies
addition or multiplication operation to each ciphertext individually. Therefore,
the total number of ciphertexts increases linearly with the matrix size, which
results in the excessive memory/storage usage, communication costs, and the
operational costs for encrypted data.

To solve the above problems, it is essential to execute mining tasks with both
a reduced size of ciphertext and fewer encrypted-data operations. In order to
realize this, we adopt the polynomial Chinese Reminder Theorem (CRT) packing
method proposed by Smart and Vercauteren [17, 18] with the Ring Learning
With Errors (RLWE)-based BGV scheme [5]. With the packing method, we are
able to pack multiple plaintexts into a ciphertext, followed by a parallelization
of its element-wise vector multiplication. In comparison with P3CC, this results
in smaller ciphertexts overall and fewer operations.

Our contribution is threefold. i) To the best of our knowledge, this is the first
implementation of the frequent pattern mining constructed with the FHE pack-
ing method. ii) Our algorithm is optimized to pack the components column-wise
in the item-transaction matrix data to reduce the number of ciphertexts and
associated operations. Here, we define N as the number of transactions (i.e., the
number of rows in the item-transaction matrix), and ` as the slot size (i.e., a ci-
phertext packs ` components of an item-column). In our algorithm, the number
of ciphertexts required to pack all the components of an item column decreases
from N to dN/`e, and hence the number of operations over all ciphertexts also
decreases from N to dN/`e. iii) Both parallelization and caching technique are
adopted to speed up the execution: parallelization for file reading/writing, en-
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cryptions and calculations for each support value for encrypted data, and caching
the previous results of the element-wise vector multiplication. FHE requires nu-
merous multiplications among ciphertexts during such a multiplicative process,
thus caching technique will work effectively.

The rest of this paper is organized as follows. We review related work in
Section 2, and then introduce the background to the RLWE-based FHE scheme
and the P3CC protocol in Section 3. We propose our scheme for efficient frequent
pattern mining in Section 4, followed by its experimental evaluation in Section
5. Lastly, we conclude this paper in Section 6.

2 Related Work

In this section, we discuss related research on data mining with cryptosystems.
We then describe P3CC, which is the work most related to ours on frequent
pattern mining.

Works on data mining with cryptosystems [11, 12] is classified into two cate-
gories: multi-party computation (MPC), and homomorphic encryption (HE). In
MPC, Kapoor et al. [12] proposed an algorithm for pattern mining that targets
distributed database while preserving privacy by MPC. In HE, Mohammed et
al. [11] proposed a secure comparison technique with FHE in the case of two-
party association rule mining. They then showed that MPC is not suitable for
association rule mining due to its storage, communication, and computational
limitations.

The Privacy Preserving Protocol for Counting Candidates (P3CC) by Liu et
al. [14] is the work that is most related to ours. Liu et al. employed an integer-
based FHE [20] by van Dijk et al. It uses component-wise encryption on all the
individual binary-represented components in the item-transaction matrix data.
Liu et al. proposed α-pattern uncertainty for security in frequent pattern mining.
This method maps items to meaningless symbols, and then adds dummy item-
sets to prevent identification. The limitations of P3CC are its time complexity
and the availability of computational resources, i.e., memory and storage. In
addition, P3CC time complexity depends linearly on the number of transactions
because of its component-wise encryption scheme. As for the execution time of
P3CC, it takes from 1,000 to 10,000 seconds even with 5,000 transactions, with
the minimum support ranging from 10% to 60% [14].

3 Preliminaries

In this section, we explain four algorithms that are used in latter sections: i)
the Apriori algorithm, which is one of the best-known frequent pattern min-
ing algorithms, ii) the P3CC algorithm, iii) polynomial CRT packing, and iv)
the TotalSum algorithm for summing up all the elements of CRT-represented
ciphertexts.
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3.1 Apriori Algorithm

Agrawal and Srikant [2] proposed the now well-known algorithm called Apriori
for mining frequent patterns. The transaction database, which consists of a set of
items such as in Fig. 1 (a), can be mapped to the bit-represented item-transaction
matrix shown in Fig. 1 (b). We show both the formal model of frequent patterns
(Definition 1) [1] and the Apriori procedure (Algorithm 1) [14].

Items
Trans I1 I2 I3 I4 I5 I6

T1 1 0 1 1 0 0
T2 0 0 1 0 1 1
T3 0 1 0 1 1 1
T4 1 1 0 0 1 0
T5 0 0 1 0 0 1
T6 1 0 0 1 0 1

Trans. ID ItemSet
T1 {I1, I3, I4}
T2 {I3, I5, I6}
T3 {I2, I4, I5, I6}
T4 {I1, I2, I5}
T5 {I3, I6}
T6 {I1, I4, I6}

(b) item-transaction matrix database(a) original database

Fig. 1: Item-transaction database

Definition 1. (Frequent Patterns) Let I = {i1, i2, ..., im} be a set of m non-
identical items, and let T be a set of transactions. Each transaction t ∈ T has
a set of items from I, i.e., t is a subset of I, with t[k] = 1 if t contains ik, and
t[k] = 0 otherwise. Let a pattern p be a subset of I. We say that a transaction
t satisfies p, if and only if t[k] = 1 for all items ik in p. The support of p is
equal to the number of transactions in T that satisfy p. We say that a pattern is
frequent if and only if its support is equal to or greater than a given minimum
threshold called minSup.

Firstly, the Apriori algorithm sets the frequent patterns of unit length, as
L1 by counting each item’s support (lines 1-4). It then obtains all the frequent
patterns in the iteration (lines 6-13).

Secondly, Apriori generates the length-2 candidate itemset C2 from the fre-
quent itemset L1 (line 7), e.g., it generates C2 = {{a, b}, {b, c}, {a, c}} from
L1 = {{a}, {b}, {c}}. Thirdly, Apriori counts each length-2 pattern’s support
(lines 8-10) to obtain a new frequent pattern itemset L2 by comparing with
minSup (line 11), e.g., it obtains L2 = {{a, b}, {b, c}} if only the support of
items {a, c} is lower than minSup. Lastly, Apriori joins L2 to the set A (line 12),
followed by the execution of lines 6-13 repeatedly until no more candidates are
generated.

Function countSupport calculates each support of candidate c ∈ Ci+1 by
executing the element-wise AND operations over the item columns of c, fol-
lowed by summing up all bits. For example, suppose we count the support of
c = {a,b}, where a = (1, 0, 1, 1, 0)T and b = (1, 1, 0, 1, 1)T are vectors, each of
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whose elements represents whether the ith transaction has a or b. We first gen-
erate (1, 0, 0, 1, 0) by executing element-wise AND operations, and then obtain
a support of 2 by counting all unitary bits.

Algorithm 1 Apriori(I,TDB, minSup) [14]

Input: Itemset I; Transaction database TDB; Minimum threshold minSup;
Output: Frequent pattern itemset A;

1: for each candidate c ∈ I do
2: c.support := countSupport(c, TDB);
3: end for
4: L1 := {c ∈ I | c.support ≥ minSup};
5: A← L1

6: for (i = 1; ‖Li‖ > 1; i← i + 1) do
7: Ci+1 := generateCandidatePatterns(Li);
8: for each candidate c ∈ Ci+1 do
9: c.support := countSupport(c, TDB);

10: end for
11: Li+1 := {c ∈ Ci+1 | c.support ≥ minSup};
12: A← Li+1;
13: end for
14: return A;

3.2 P3CC and α-Pattern Uncertainty

P3CC as proposed by Liu et al. [14] adopts the “α-pattern uncertainty“ algo-
rithm, which decreases the probability of information leakage to attackers dur-
ing P3CC server-client communication. Since FHE does not support comparison
over encrypted data, P3CC has to return intermediate results of frequent pattern
mining to the client. This is to both decrypt and compare them when numeric
comparisons are required between each itemset’s support and minSup.

Along with Algorithm 1, P3CC works as follows. i) As a preparation step,
the client generates both public and secret keys to encrypt the database. Then,
the client sends both the public key and the encrypted database to the server.
ii) The server calculates each item’s support over the encrypted data (lines 1-3)
followed by sending the encrypted results back to the client. Then, the client
obtains frequent items by comparing with minSup after decrypting the results
(line 4). iii) The client generates a new candidate itemset, and then sends it
to the server (line 7). iv) The sever calculates each pattern’s support (lines 8-
10) over the encrypted data, and then sends the encrypted results back to the
client. v) The client decrypts the results to obtain the counted supports, and
then compares each itemset’s support with minSup over plaintexts (line 11).
For each length-(i+ 1) itemset, iterate processes iii), iv), and v).
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During the multiple occurrences of server-client communication described
above, there exists a security issue whereby the server can infer the important
itemsets by snooping on the candidate patterns obtained from the client. To
prevent this, α-pattern uncertainty limits the server’s certainty about frequent
patterns. In other words, α-pattern uncertainty lowers the probability of an
attacker inferring frequent patterns by employing dummy patterns. In this paper,
we assume the α-pattern uncertainty achieves a Semi-honest model, where the
server tries to distinguish true patterns from dummy patterns while following
the protocol. The α-pattern uncertainty ensures that the server cannot infer true
patterns more than the probability α. We do not discuss the security analysis
in detail since it is not our objective. See the work by Liu et al. for further
details [14].

3.3 Polynomial CRT Packing over FHE

Smart and Vercauteren [17, 18] proposed the CRT packing method over FHE.
This allows multiple plaintexts to be packed into one ciphertext, which results in
fewer ciphertexts. The following two steps generate a ciphertext in the polyno-
mial CRT representation: i) multiple plaintexts are encoded into a single polyno-
mial, i.e., CRT packing, and ii) encrypting the polynomial generates a ciphertext.

A CRT-represented ciphertext generated from ` plaintexts can be consid-
ered as a vector consisting of ` slots, each of which contains one plaintext.
Multiplication over the CRT-represented ciphertexts is performed slot-by-slot
in parallel, i.e., element-wise vector multiplication. See the work by Smart and
Vercauteren [17, 18] for the mathematical construction of polynomial CRT pack-
ing with FHE.

3.4 Total Summation over CRT-represented Ciphertext

With the polynomial CRT packing method [17, 18], the FHE scheme needs to
handle a ciphertext encrypted from multiple plaintexts, i.e., CRT-represented
ciphertext. The following TotalSums proposed by Halevi and Shoup [10] is used
for summing up all slots of a CRT-represented ciphertext. It takes a ciphertext
encrypted from (v1, v2, . . . , vn) as its input, and outputs a ciphertext that en-
crypts (u, u, . . . , u), where u = Σn

k=1vk. The procedure is shown in Algorithm 2.
See the work by Halevi and Shoup for detailed explanation of the algorithm and
the implementation [10].
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Algorithm 2 TotalSums(v) [10]

Input: Encrypted array v;
Output: Encrypted array u;

1: u := v, e := 1, n := ‖v‖;
2: k := numBits(n); # number of bits in n, e.g., numBits(5)=3
3: for (j := k − 2; j ≥ 0; j ← j − 1) do
4: u ← u + (u ≫ e); # ≫: rotate operation
5: e← 2 · e;
6: b := bitj(n); # j-th bit of n, with bit 0 of LSB
7: if (b = 1) then
8: u ← v + (u ≫ e);
9: e← e + 1;

10: end if
11: end for
12: return u

4 Efficient Frequent Pattern Mining Algorithm over FHE

In this section, we propose an efficient frequent pattern mining algorithm that
uses Apriori over FHE. It has minimal time and space complexities, and uses
the polynomial CRT packing method and our caching technique. To begin with,
we prepare an item-transaction binary-represented matrix data as shown in Fig.
2. Each column and row contains transactions and items, respectively. We use
Ntrans as the number of transactions, Nitem as the number of items, and ` as
the slot size of a ciphertext.

Since P3CC [14] encrypts plaintexts individually for each components in the
item-transaction matrix data (as circled with heavy lines in Fig. 2a), it uses sig-
nificant storage space and accrues excessive operational costs for encrypted data.
This is because component-wise encryption increases the total size of ciphertexts
linearly with the matrix size. In particular, P3CC generates Nitem ×Ntrans ci-
phertexts in total, which requires Σm

i=1piN
i−1
trans times multiplications to count

the supports of all patterns, where pi is the number of length-i candidate item-
sets, N i−1

trans is the (i − 1)th power of Ntrans, and m is the maximum length of
the candidate itemset.

To reduce the time and space complexities, it is essential to execute min-
ing tasks with smaller ciphertexts and fewer associated operations. In order to
achieve this, we tune Apriori over FHE in two ways. Firstly, we adopt polyno-
mial CRT packing [17, 18], which not only reduces the total ciphertext size, but
also enables element-wise vector multiplication over ciphertexts in parallel, i.e.,
batching. Secondly, the execution of our scheme is accelerated by caching the
previous results of the element-wise vector multiplication.
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4.1 Polynomial CRT Packing and Batching

To reduce the time and space complexities of Apriori algorithm over FHE, poly-
nomial CRT packing is adopted. We first port the framework of FHE from the
P3CC integer-based DGHV scheme [20] to the RLWE-based BGV scheme [5],
so that our scheme is able to handle the polynomial CRT packing. As in Section
3.3, an FHE scheme with packing generates a ciphertext in the polynomial CRT
representation, which packs multiple plaintexts in the ciphertext slots.

To implement the packing method with Apriori, we choose to pack binary
components column-by-column, where each column has Ntrans components for
all Nitems columns and each ciphertext packs ` components of their components.
That is, our scheme requires dNtrans/`e ciphertexts to pack all Ntrans compo-
nents in one item-column as shown in Fig. 2 (b). Here, when Ntrans is indivisible
by `, its remaining r components are packed into another ciphertext along with
`− r dummy zero components, as shown in Fig. 3.

With its polynomial CRT packing method, our scheme has two advantages.
Firstly, the number of ciphertexts to represent all components in the database
decreases from Ntrans ·Nitems to dNtrans/`e ·Nitems. Likewise, the costs of both
memory/storage and communication between the client and the server decrease
from Ntrans · Nitems to dNtrans/`e · Nitems, given that the space usage and
communication cost arises from the ciphertext size. Secondly, the number of
multiplications required to count the supports of all patterns decreases from
Σm

i=1piN
i−1
trans toΣm

i=1pidNtrans/`ei−1, where pi,N
i−1
trans, andm are defined above.

4.2 Optimization by Caching

We propose a caching technique to omit redundant operations when counting the
support of each candidate in the Apriori algorithm with FHE. As described in
Section 4.1, counting the support of each candidate requires Σm

i=1pidNtrans/`ei−1

element-wise vector multiplications. In particular, with a length-(i+1) candidate
itemset c={c1,c2,. . .,ci+1}, the operation ⊗i+1

j=1cj is required for calculating its
support, where ⊗ is the element-wise vector multiplication. For example, when
we calculate the support of a length-4 candidate itemset {a,b,c,d}, element-wise
vector multiplications of a⊗b⊗c⊗d are required. However, the supports of the
length-3 candidate itemsets (i.e., a⊗b⊗c, a⊗b⊗d, a⊗c⊗d, and b⊗c⊗d) have
been calculated before for the length-4 one {a,b,c,d}, because of the Apriori
algorithm described in Section 3.1. To take the full advantage of this phenomena,
we adopt a caching technique to reuse the previously calculated element-wise
vector multiplication results.

During the execution of the (i+1)th iteration, we will reuse the cached result
from the ith iteration. In the example above, our algorithm caches the results
a⊗b⊗c, a⊗b⊗d, a⊗c⊗d, and b⊗c⊗d with indexation by items when counting
the supports for length-3 patterns, and reuse them in the next iteration for
length-4, as shown in Fig. 4 (b).

With the proposed caching technique, our algorithm requires only one time
element-wise vector multiplication per support calculation in the ith iteration. As
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Items
Trans I1 I2 I3 I4 … INitem

T1 1 0 1 1 … 0
T2 0 0 1 0 … 1
T3 0 1 0 1 … 1
T4 1 1 0 0 … 0
: : : : : :

TNtrans 1 0 0 1 … 1

(a) component-wise encryption (b) vector-wise encryption 

: Range of Encryption

Items
Trans I1 I2 I3 I4 … INitem

T1 1 0 1 1 … 0
T2 0 0 1 0 … 1
T3 0 1 0 1 … 1
T4 1 1 0 0 … 0
: : : : : :

TNtrans 1 0 0 1 … 1

ciphertext

Fig. 2: Encryption strategy of item-transaction database
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Fig. 3: Ciphertext-packing of item-column-components

described in Section 4.1, the total number of element-wise vector multiplications
decreases from Σm

i=1pidNtrans/`ei−1 without caching to Σm
i=1pidNtrans/`e with

it, where pi and m are defined at the beginning of Section 4. The server’s total
computational order is equal to the computational order of the support counting,
which decreases from O(dNtrans/`ei−1) to O(dNtrans/`e).

Our new algorithm for counting supports with caching technique is shown
in Algorithm 3. The caching technique works when the pattern length is greater
than two. In addition, we adopt the TotalSums function described in Section 3.4
to sum up all elements, i.e., slots of the CRT-represented ciphertext.
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Fig. 4: Support calculation with caching technique.

Algorithm 3 CountSupport by FHE with Cache (ETDB,C,CD)

Input: Encrypted transaction database ETDB; Candidate itemsets C;
Associative array for caching data CD;

Output: Support array of candidate itemsets S; Updated CD;

1: S := ∅;
2: for each candidate itemset c ∈ C do
3: i := ‖c‖;
4: itemID := c[i− 1]; # i− 1: last element
5: c’ := c[0, 1, . . . , i− 2]; # length-(i− 1) itemset
6: col := getItemColumnfromETDBbyID(itemID);
7: hashKey := setHashKeyfromItemset(c’);
8: cache := getCachedDatabyKey(CD, hashKey);
9: res := elementwiseVectorMultiply(cache, col); # cache · col

10: support := TotalSums(res); # sum up all elements of res
11: newHashKey := makeNewHashKey(c);
12: cacheNewData( makePair(newHashKey, res) );
13: S.append(support);
14: end for
15: return S,CD;
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5 Experimental Evaluation

In this section, we evaluate the effectiveness of both i) adopting the packing
scheme implemented with Apriori, and ii) optimization by our caching technique.
Furthermore, we confirm that our optimized scheme works acceptably with α-
pattern uncertainty and relatively large data sizes.

The dataset we used for the experimental evaluations was one that was gen-
erated artificially by the IBM Quest Synthetic Data Generator1. This generator
produces various patterns of datasets by changing the parameters {T, I,N,D,L},
where T is the average length of items per transaction, I is the average length
of the maximal pattern, N is the number of different items in a transaction, D
is the number of transactions, and L is the number of possible frequent patterns
that can be generated.

In addition, our scheme is implemented both with the public FHE library
HElib2 that supports the BGV RLWE cryptosystem [5], and with the NTL math-
ematical library3 over the GMP multiple-precision arithmetic library4. The GMP
is used for the long integer arithmetic and the NTL is for handling polynomials
over the integers. HElib builds an FHE scheme with parameters {p, r, k, l, c, w},
where pr denotes the plaintext space, k is the security parameter, l is the number
of levels in the modulus chain, c is the number of columns in the key-switching
matrices, and w is the Hamming weight of the secret key.

The platform used in the evaluation consists of two machines: a client with
an Intel Xeon CPU E5-2643 v3 running at 3.4 GHz and with 512 GB of memory,
and a server with an Intel Xeon CPU E7-8880 v3 running at 2.3 GHz and with
1 TB of memory, both of which are equipped with CentOS6.6.

For comparison with the component-wise encryption scheme of P3CC, we
implemented our method over the RLWE-based FHE, and then use it in the
following evaluations. As for the HElib parameters, we set {p, r, k, l, c, w} to
{2, 14, 80, 10, 3, 64} in the following evaluations. The plaintext space 214 is higher
than the largest value of D we use, the level l = 10 is to enable at least four
multiplications per ciphertexts, and k, w, and c are default values for the security
and the key-switching matrix.

5.1 Experiment with Ciphertext Packing

To evaluate the effectiveness of our scheme with the ciphertext packing (i.e.,
a vector-wise encryption scheme), we compared it with our implementation
of P3CC (i.e., a component-wise encryption scheme), from the viewpoints of
both execution time and maximum memory usage. We choose the small dataset,
T10I6N50D100L1k, for the comparative experiment, since the component-wise
encryption scheme over the RLWE-based FHE takes a relatively long time to
run.
1 http://fimi.ua.ac.be/data/
2 http://shaih.github.io/HElib/index.html
3 http://www.shoup.net/ntl/
4 https://gmplib.org/
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Fig. 5 shows the execution times of both the component-wise and the vector-
wise encryption schemes with variation of the minimum support. We first ran
the experiment on a single thread (Fig. 5a), and then adopted parallelization by
multi-thread file reading/writing, encryption, and calculation of each pattern’s
support (Fig. 5b). The client executed file writing and encryption on 12 threads,
and the server executed file reading and calculations on 24 threads.

As shown in Fig. 5 (a), compared to the component-wise encryption scheme,
our vector-wise one is 13.4 times faster with 10% minsup, and 7.26 times faster on
average over the range 10% ≤ minsup ≤ 40%. With parallelization, our scheme
is 14.9 times faster with 10% minsup, and 7.97 times faster on average, as shown
in Fig. 5 (b). The maximum memory usage decreases by 90.7%.

(a) on single thread (b) on multiple threads

Fig. 5: Comparison of packing and non-packing schemes

5.2 Optimization by Caching

To evaluate our optimized scheme with both ciphertext packing and the caching
technique, we compare it with the non-optimized scheme, i.e., only with cipher-
text packing, which was evaluated in Section 5.1. We used the same dataset to
compare them for the same criteria.

Fig. 6 shows the execution times of both the optimized and non-optimized
schemes with variation of the minimum support. We ran these on a single thread
(Fig 6a), and then on multiple threads (Fig. 6b). The number of threads and the
target of multi-threading were the same as those of the evaluations in Section
5.1.

As shown in Fig. 6 (a), compared to the non-cached scheme, our scheme is
1.86 times faster with 10% minsup, and 1.62 times faster on average over the
range 10% ≤minsup ≤ 40%. With parallelization, our scheme is 1.58 times faster
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with 10% minsup, and 1.42 times faster on average, as shown in Fig. 6 (b). The
maximum memory usage decreases by 14.5%. In total, our optimized scheme is
23.6 times faster, and the memory usage decreases by 92.1% with 10% minsup
in comparison with the multi-threaded component-wise encryption scheme in
Section 5.1.

(a) on single thread (b) on multiple threads

Fig. 6: Comparison of caching and non-caching schemes

5.3 Security and Data Size

We test the scalability of our optimized scheme (i.e., with packing and caching)
for i) the size of the data, and ii) α-pattern uncertainty security as described in
Section 3.2. The latter determines the server’s uncertainty over true patterns in
the candidate itemset by adding dummy patterns.

We evaluate the first case by measuring the execution times and mem-
ory usages of both our optimized scheme and the component-wise encryption
scheme, while varying the transaction data size. We first set the dataset to
T10I6N50D1kL1k, and then vary the parameter D from 1k to 10k as shown
in Fig. 7 (a). The experiment is multi-threaded with the same conditions as in
Section 5.1, with 20% minsup.

As shown in Fig. 7 (a), the difference in the execution times between the
schemes increases with the transaction size. This result is attributed to the
number of ciphertexts generated in each scheme by the ciphertext packing, as
described in Section 4.1. Compared to the component-wise encryption scheme,
our scheme is 430 times faster with D = 10k, and 180 times faster on average
over the range 1k ≤ D ≤ 10k. In addition, the maximum memory usage of our
scheme decreases by 94.7%.

We then evaluate the second case by measuring both the execution time
and the memory usage of our optimized scheme, with α-pattern uncertainty as
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described in Section 3.2. The parameter α is the probability of inferring the
true patterns in the candidate set with dummy patterns. In other words, if as α
increases, the security becomes weaker. Therefore, we can consider α−1 to be a
privacy parameter. We first set the dataset to T10I6N50D1kL1k and α−1 to 1
(i.e., no dummy patterns), then vary the parameter α−1 from 1 to 6 as shown
in Fig. 7 (b). Compared to the component-wise encryption scheme, our scheme
is 56.8 times faster on average over the range 1 ≤ α−1 ≤ 6. In addition, the
maximum memory usage decreases by 82.8%. There is a trade-off between the
execution time and the security due to the additional calculations for the dummy
patterns.

(a) varying no. of transactions (b) varying privacy parameter

Fig. 7: Optimized scheme with security and relatively large data sizes

6 Conclusions and Future Work

We proposed an efficient and secure frequent pattern mining by adopting both
the polynomial CRT packing method and a caching technique. Our experimental
results shows that the proposed scheme has lower time and space complexities
in comparison with those of the previous P3CC scheme. When the transaction
size is 10,000, our optimized scheme is 430 times faster and the memory usage
decreases by 94.7%.

Future work will include attempting to reduce the communication costs by
comparing larger and smaller ciphertexts. To achieve this, bootstrapping pro-
cedures will have to be implemented, since such comparisons require numerous
homomorphic operations. Moreover, we will consider a new security idea that
should work for the aforementioned comparative scenario.
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