Secure Frequent Pattern Mining
by Fully Homomorphic Encryption
with Ciphertext Packing

Hiroki Imabayashi, Yu Ishimaki, Akira Umayabara,
Hiroki Sato, and Hayato Yamana

Waseda Univ., Japan, Yamana Lab.

Outline

1. Background - What problems need to be solved ? —
2. Proposal - How to make the mining efficient? —
3. Evaluation Results

4. Conclusion

Background - Needs and Settings -

Processing data while preserving both input & output privacy

Input / Output Prlvacy eavesdrop
operations to data
= abstraction

&9 < X
= noise-addition Privacy information

= perturbation . disclosure
Server (Third-party)

Confidential data With Input privacy with Output privacy
~(e.g. k-anonymity) (e.g. Differential Privacy)

¢o® O

Al

Client 3

Background - Needs and Settings -

Processing data while preserving both input & output privacy

eavesdrop

~—X
ro Protect .
QJ disclosure
o

Server (Third-party)

Cryptosystem

" encrypt

Client - Get accurate results?

Background - Needs and Settings -

Apriori as a frequent pattern mining algorithm

Which item pairs were appeared frequently at once?

Data Mining

Machine
Learning

Frequent
Pattern Mining

...... ® A p ri (0 ri

e FP-growth, ...

| Statistic |

. ® avg, S.D.
5 e tvalue

Background - Apriori as frequent pattern mining -

Apriori Algorithm

pattern-length =1

D {apple}, {orange}, {banana}, {melon}

@38,6,5,3

3 {apple}, {orange}, {banana} (minimum support = 5)

(D Generate candidate patterns (item pairs)

(2) Count “support” (frequency) for each pattern

Pattérn-length ++ 3 Get frequent patterns

S

by comparing with “minimum support” (Threshold)

Background - Apriori as frequent pattern mining -

Apriori Algorithm

pattern-length = 2 — 1apple}, {orange}, {

D {apple, orange}, {apple, banana}, {orange, banana}

26,5, 3

3 {apple, orange}, {apple, banana} (minimum support = 5)

banana}

(D Generate candidate patterns (item pairs)

(2) Count “support” (frequency) for each pattern

Pattérn-length ++ 3 Get frequent patterns

S

by comparing with “minimum support” (Threshold)

Background - Apriori as frequent pattern mining -

{apple, orange}, {apple, banana}l

Apriori Algorithm pattern-length=3 =
(D {apple, orange, banana}
@3
3 none (minimum support = 5)

(D Generate candidate patterns (item pairs)

(2) Count “support” (frequency) for each pattern

Pattérn-length ++ 3 Get frequent patterns

S

by comparing with “minimum support” (Threshold)

Background

- Apriori as frequent pattern mining -

How Apriori works with a transaction dataset?

Trans. ID

Item Set

Definition
T {a, b, e} support:
T2 {a, b, c, d} “Frequency of pattern”
LE {b, e} minimum support:
14 {a, b, ¢ e} “Threshold of frequent”
= ta, b, c,)
T6 {a, b, c, d, {} .
(minimum support = 3) |
T:;t;:\ (D candidate Patterns Supports (3 Frequent Patterns
1 {a}, {b}, {c}, {d}, {e}, {f} 56,5,3,3,2 {a}, {b}, {c}, {d}, {e}
, {a, b}, {a, ¢}, {a,d}, {a, e},{b,c}, | 5,4,3,2,3, {a, b}, {a, c}, {a, d},
{b, d}, {b, e}, {c, d}, {c, e}, {d, e} 3,2,3,1,0 {b, c}, {b, d}, {c, d}
3 {a, b, c}, {a, b,d}, {a,cd} {b,cd} 4,3,2,3 {a, b, c}, {a, b, d}, {b, c, d}
4 {al br C d} 3 {a, b, o d}

Background - Counting support for FHE -

How to calculate the “support” over ciphertexts?

Trans. ID Item Set Items alblcldle
T1 {a’ b, e} Trans

12 { a,b,c d} T1 1| 1(0(0]1

13 {b e} T2 1 1 1 110

! T3 0 1 0 0|1

L {a,b, ¢, e} T4 |1[1|1]0]1

5 {a, b, c, d} 5 |1]1]1]1]0

T6 {a, b, d, } T6 1|1|0/|11|0

binary representation

ex.

: support of
: {a, b, c}

(lMult” & l(AddH
are required

C

0 0

1 1

0o|l=1o0 < b

- 3

1 1

1 1

0 0

Fully Homomorphic
Encryption

Related work - Privacy Preserving Protocol for Counting Candidates (P3CC) [Liu et al. 15] -

Server executes only “Support-Counting” to skip comparison over ciphertexts

Client

Preparation

Server

PK, Enc(TDB)

A% =

pattern-length = 2 |:

v

,Generate Candidate Patterns (CPs) | /

Generate Frequent Patterns (FPs)

support 2 ‘ 10 %

CPs = {{a,b}, {a,c}, {a,e}, {b,c}, {b,e},

FPs = {{a,c}, {a,e}, {b,e}, {c,e}}

. Supports = 6T, [14], [13], [97, [11], [17]]

v

CPs = {{a,b}, {a,c}, {a,e}, {b,c}, {b,e}, {c,e}}e

{c,e}}

Count Support of each CP

Supports Supports = [[6], [14], [13], [9], [11], [17]]

No comparison over encrypted data 11

Related work - Component-wise encryption in P3CC -

P3CC’s component-wise encryption scheme has large time/space complexities

Trans 1112 13|14]|..]|INitems

n [1]o]a]n 0 Needs many ciphertexts

2 |oJo|1]o 1 .

B [o]1]o]1 1 _ component-wise

e encryption L} memory usage {1
TNerans | 1 0]0 1 1 N\

I ciphertext

ex. The support of {I1, 12, 13} is calculated component-wisely

11 12 13 o
o] x [x[1]-[L Execute many multiplications
T2jofxjoyx|1f=1]0
Blolxjofxjol=|fof| | , ,
T x o x 1] = 1oy, Y L} execution time {»
TNirans I X I X z = z up 19

Proposal - Solution 1. Ciphertext-packing -

Ciphertext-Packing reduces both time/space complexities

Trans 1112|1314 | .. |INiem
T1 1j1]0]1]1 0
T2 ojoj1)]o0 1
T3 oj]1]1]0)]1 1
T4 1 1j0]}]0 0

TNgans | 1] OO0 |1 1

ex. The support of {I1, 12, 13} is calculated by batching

I 12

TM]1 1

T2 1 0 1

13| o0 0

T4 | 1 1

TNtrans 1 0
ol | 0

0 0

&

3

= O O =

o oo

column-wise
encryption

HOOHl

o oe

|° oo

—

Sum

Reduce #ciphertexts to 1/N;,..

L} memory usage <}

Execute fewer multiplications

L} execution time {}

13

Proposal - Solution 2. Ciphertext-caching -

ex. Support of {11, 12} (1,
0
11 _ -l —[7
T1 |1 0 Sum
T2 0
i o Reuse of | v
[X [o [o] _
TNians |2 o :
0 up No repeat calculations
o _
| — -
R 0
1112 euse 0
Intermediate = | 3
0 Sum
Result cache o up*
o] _ 14

Proposal - Solution 2. Ciphertext-caching -

Ciphertext-caching make the support-counting execution faster

w/o caching w/ caching
length=1
(length=1) 11 (length=1) -
cache
(length=2) 171 [X]|12 .t (length=2) 11 X 12 I— —. IIXIZ
: :’. PUITTRTTE L cache
(length=3) [11 |X [12 |x |13 (length=3) | 11 X 12 |X | I3 =l 11X 12 X 13
P reuse cache
(length=4) | 1 [X |12 |X | I3 |X| 14 (length=4) | 11 X 12 X 13 | X |14 | Z~{ 11X 12 X I3 X 14

Repeating same multiplications for each step Only one time multiplication for each step
=> Wasteful calculations => Execution time J',

15

Proposal - Problems and Solutions -

Ciphertext-Packing/Caching techniques improve time and space complexities

Problems to be improved:

———

' * memory space

' e execution time

1) ciphertext-packing method

Tl
T2
T3
T4

TNtrans

11

1|
0
0
1

1
0
Lol

A2

[NS

° ..

®

13

, OO0 R

o --

Sum
up*

11

11 | X| 12

e
ann®

an®
an®

et
-r
l--

Ol
e
-

-
'Ll
L

2) ciphertext-caching algorithm

cache

11 X 12

cache

111 X12 X I3

cache

I“‘

11 X12 X I3 X 14

16

Evaluation Results - Setup -

Experimental Setup

E 10GHz Ethernet D

Client: Server:

CPU: Intel Xeon CPU E5- 2643v3(3.4GHz) CPU: Intel Xeon CPU E7-8880 v3(2.3GHz)
memory: 512GB memory: 1TB

(runs on 12-thread) (runs on 24-thread)

Dataset™: Library:

- #Transaction: 100, - HElib (FHE library)

- #item ID: 50, - NTL mathmatical library

- Avg. #item in a transaction: 10 - GMP multiple-precision arithmetic library

L T T T T T T T T T T T T T T T T T TP P T P P T P PP P TP PP PPP PP PP L TP T T TP P T PP PP PP TP PP TP PP PP

(*Dataset was generated by IBM Quest Synthetic Data Generator)

Evaluation Results - Scheme with Ciphertext-packing/caching techniques -

The scheme with packing & caching runs 23.6x faster than the scheme without them

! I ! !

- w/o pack w/o cache Component-wise

- - w/ pack w/o cache

. @ +@ — w/ pack w/ cache

23,‘55(_\faster§ | @Packing 14.9x faster
| . 92.3% decrease (memory)

P — “i.Component-wise

@CaChing 1.58x faster
. 53.1% increase (memory)

..............

execution time [sec]
-
o

=
o
et
I
i

0 ; ; ; I |
916 20 30 40 50 60

minsup [%]

#trans = 100, #items =50 18

Evaluation Results - Optimized scheme with security and relatively large data sizes -

Scheme with the ciphertext-packing/caching hardly depends on the transaction size

- - Component-wise @ .
— Vector-wise PaCklng

Component-W|se + @ (2 Caching

. . — - .
-——
-

o3l 430x faster
I 94.7% decrease (memory)

execution time [sec]
=

g @

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
transaction size

.. Varying num. of transactions
.. 1 9

Conclusion - Apriori by FHE can be accelerated by Ciphertext-Packing/Caching technique -

Apriori (frequent pattern mining) by FHE

ﬂelerate\

Ciphertext-Packing Ciphertext-Caching
NEREEaECE]
T2 |0 1 0 0 cache
slof Jof fo] fo [a]x[2] . =11 x|
Tl 1 1 1 . [7] o eenTeuse cache
TN,,.,,,,: : X : 0% A7 o] | sum 11X12 |X |13 | = 11X 12 X 13
0 0 0 0 up* e TRUSE cache
: : 11X12X13|X[m] z-{11x12x13xm1
2 2 g 2 e
time and space complexities <> time complexity <.t

The ciphertext-caching algorithm uses additional memory space

=> Needs to prune wasteful caches that is not reused later
20

Thank you for listening!

Any questions?

21

