
Secure	Frequent	Pattern	Mining	
by	Fully	Homomorphic	Encryption

with	Ciphertext	Packing	

Waseda Univ., Japan,	Yamana Lab.		

Hiroki	Imabayashi,	Yu	Ishimaki,	Akira	Umayabara,	
Hiroki	Sato,	and	Hayato Yamana



2

Outline

1. Background - What problems need to be solved ? –

2. Proposal - How to make the mining efficient? –

3. Evaluation Results

4. Conclusion



3

with Input privacy
(e.g. k-anonymity)

with Output privacy
(e.g. Differential Privacy)

Server (Third-party)

Background - Needs and Settings -

Confidential data

à can not hide data itself
à low mining accuracy

Input / Output Privacy

§ abstraction
§ noise-addition
§ perturbation	

operations to data

eavesdrop

Privacy information
disclosure

Client

Processing data while preserving both input & output privacy



4

Background - Needs and Settings -

Confidential data

decrypt

Data mining results

à Get accurate results

eavesdrop

X
Protect

disclosure

encrypt

client

Cryptosystem

Server (Third-party)

Client

Processing data while preserving both input & output privacy



5

Apriori as a frequent pattern mining algorithm

Background - Needs and Settings -

Data Mining

Machine
Learning

Statistic
• avg., S.D.
• t-value

Frequent
Pattern Mining

• Apriori
• FP-growth, …

Which item pairs were appeared frequently at once?



6

Apriori Algorithm

① Generate candidate patterns (item pairs)

② Count “support” (frequency) for each pattern

③ Get frequent patterns
by comparing with “minimum support” (Threshold)

pattern-length = 1
① {apple}, {orange}, {banana}, {melon}
② 8, 6, 5, 3
③ {apple}, {orange}, {banana}

Pattern-length ++

(minimum support = 5)

Background - Apriori as frequent pattern mining -



7

Apriori Algorithm

① Generate candidate patterns (item pairs)

② Count “support” (frequency) for each pattern

③ Get frequent patterns
by comparing with “minimum support” (Threshold)

pattern-length = 2
① {apple, orange}, {apple, banana}, {orange, banana}
② 6, 5, 3
③ {apple, orange}, {apple, banana}

Pattern-length ++

(minimum support = 5)

{apple}, {orange}, {banana}

Background - Apriori as frequent pattern mining -



8

Apriori Algorithm

① Generate candidate patterns (item pairs)

② Count “support” (frequency) for each pattern

③ Get frequent patterns
by comparing with “minimum support” (Threshold)

Pattern-length ++

(minimum support = 5)

pattern-length = 3
① {apple, orange, banana}
② 3
③ none

{apple, orange}, {apple, banana}

Background - Apriori as frequent pattern mining -



9

How Apriori works with a transaction dataset?

support:
“Frequency of pattern”
minimum support:
”Threshold of frequent”

Trans. ID Item Set
T1 {a, b, e}
T2 {a, b, c, d}
T3 {b, e}
T4 {a, b, c, e, f}
T5 {a, b, c, d}
T6 {a, b, c,	d, f}

Pattern
length ① Candidate Patterns ② Supports ③ Frequent Patterns

1

2

3
4

Definition

{a}, {b}, {c}, {d}, {e}, {f} 5, 6, 5,	3, 3, 2 {a}, {b}, {c}, {d}, {e}
{a, b}, {a, c}, {a, d}, {a, e},{b, c},
{b, d}, {b, e}, {c, d}, {c, e}, {d, e}

5, 4, 3, 2, 3,
3, 2, 3, 1, 0

{a, b}, {a, c}, {a, d},
{b, c}, {b, d},	{c,	d}

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d} 4, 3, 2, 3 {a, b, c}, {a, b, d},	{b,	c,	d}
{a, b, c, d} 3 {a,	b,	c,	d}

(minimum support = 3)

Background - Apriori as frequent pattern mining -



10

c
0
1
0
1
1
0

a b c
1 x 1 x 0 = 0
1 x 1 x 1 = 1
0 x 1 x 0 = 0
1 x 1 x 1 = 1
1 x 1 x 1 = 1
1 x 1 x 0 = 0

3
Sum up

ex.
support of
{a, b, c}

Fully Homomorphic
Encryption

“Mult” & “Add”
are required

Items
Trans a b c d e f

T1 1 1 0 0 1 0
T2 1 1 1 1 0 0
T3 0 1 0 0 1 0
T4 1 1 1 0 1 1
T5 1 1 1 1 0 0
T6 1 1 0 1 0 1

How to calculate the “support” over ciphertexts?
Background - Counting support for FHE -

Trans. ID Item Set
T1 {a, b, e}
T2 {a, b, c, d}
T3 {b, e}
T4 {a, b, c, e, f}
T5 {a, b, c, d}
T6 {a, b, d, f}

binary representation



11
Supports = [[6], [14], [13], [9], [11], [17]]

Preparation

Generate Frequent Patterns (FPs)
support ≥ “min support” ?

PK, Enc(TDB)

CPs

Supports

Generate Candidate Patterns (CPs)

Server executes only “Support-Counting” to skip comparison over ciphertexts
Client Server

CPs = {{a,b}, {a,c}, {a,e}, {b,c}, {b,e}, {c,e}}

pattern-length = 2

Supports = [[6], [14], [13], [9], [11], [17]]

FPs = {{a,c}, {a,e}, {b,e}, {c,e}}

CPs = {{a,b}, {a,c}, {a,e}, {b,c}, {b,e}, {c,e}}

10

No comparison over encrypted data

Count Support of each CP

pksk

1010

Related work - Privacy Preserving Protocol for Counting Candidates (P3CC) [Liu et al. 15] -



12

component-wise
encryption	

1
0
0
1
:
1

1
0
0
1
:
1

1
1
0
1
:
0

I1 I2 I3
T1
T2
T3
T4
:

TNtrans

X
X
X
X
:
X

X
X
X
X
:
X

1
0
0
1
:
0

=
=
=
=
:
=

Sum
up

7

ex. The support of {I1, I2, I3} is calculated component-wisely

Execute many multiplications

Needs many ciphertexts

memory usage

execution time

P3CC’s component-wise encryption scheme has large time/space complexities

ciphertext

Related work - Component-wise encryption in P3CC -



13

Proposal - Solution 1. Ciphertext-packing -

column-wise
encryption	

1
0
0
1
:
1
0
:
0

I1 I2 I3
T1
T2
T3
T4
:

TNtrans
Sum
up*

7

ex. The support of {I1, I2, I3} is calculated by batching

=

1
1
0
1
:
0
0
:
0

1
0
0
1
:
0
0
:
0

1
0
0
1
:
0
0
:
0

Reduce #ciphertexts to 1/Ntrans

Ciphertext-Packing reduces both time/space complexities

memory usage

execution time

Execute fewer multiplications



14

Proposal - Solution 2. Ciphertext-caching -

1
0
0
1
:
1
0
:
0

I1 I2 I4
1
1
0
1
:
0
0
:
0

1
0
0
1
:
0
0
:
0

How ciphertext-caching works?

pattern-length = 2

pattern-length = 3

1
0
0
1
:
1
0
:
0

I1 I2
T1
T2
T3
T4
:

TNtrans

1
1
0
1
:
0
0
:
0

Sum
up*

5=

1
0
0
1
:
0
0
:
0

ex. Support of {I1, I2}

ex. Support of {I1, I2, I3}

Sum
up*

8=

1
0
0
1
:
0
0
:
0

1
0
0
1
:
1
0
:
0

I1 I2 I3
1
1
0
1
:
0
0
:
0

1
0
0
1
:
0
0
:
0

Sum
up*

7=

1
0
0
1
:
0
0
:
0

ex. Support of {I1, I2, I4}

Intermediate
Result

I1 I2

cache

Reuse

Reuse

No repeat calculations



15

Ciphertext-caching make the support-counting execution faster

w/o caching w/ caching

Repeating	samemultiplications	for	each	step
=> Wasteful calculations

Only one	timemultiplication for each step
=> Execution time

Proposal - Solution 2. Ciphertext-caching -



16

• memory space ß (1)
• execution time ß (1), (2)

Problems to be improved:

2) ciphertext-caching algorithm1) ciphertext-packing method

Ciphertext-Packing/Caching techniques improve time and space complexities

Proposal - Problems and Solutions -



17

Experimental Setup
Evaluation Results - Setup -

Dataset*:
- #Transaction: 100,
- #item ID: 50,
- Avg. #item in a transaction: 10

Library:
- HElib (FHE library)
- NTL mathmatical library
- GMP multiple-precision	arithmetic	library	

（*Dataset was generated by IBM	Quest	Synthetic	Data	Generator）

Client:
CPU: Intel	Xeon	CPU	E5- 2643v3(3.4GHz)
memory: 512GB
(runs on 12-thread)

Server:
CPU: Intel	Xeon	CPU	E7-8880	v3(2.3GHz)
memory: 1TB	
(runs on 24-thread)

10GHz Ethernet	



18

Evaluation Results - Scheme with Ciphertext-packing/caching techniques -

The scheme with packing & caching runs 23.6x faster than the scheme without them

#trans = 100, #items = 50

1.58x faster
53.1% increase	(memory)

14.9x faster
92.3% decrease (memory)

23.6x faster
① +②

Component-wise

Column-wise

Component-wise

① Packing

Optimized

② Caching



19

Scheme with the ciphertext-packing/caching hardly depends on the transaction size

Varying num. of transactions

430x faster
94.7% decrease (memory)

#items = 50

Evaluation Results - Optimized	scheme	with	security	and	relatively	large	data	sizes -

① +②

Component-wise +②

① Packing
② Caching



20

Apriori (frequent pattern mining) by FHE

Conclusion - Apriori by	FHE can be accelerated by Ciphertext-Packing/Caching technique -

Ciphertext-CachingCiphertext-Packing

time and space complexities

Problem remaining

The ciphertext-caching algorithm uses additional memory space
=> Needs to prune wasteful caches that is not reused later

time complexity

accelerate



21

Thank you for listening!

Any questions?


